第一范文网 - 专业文章范例文档资料分享平台

数学分析(二)试卷1

来源:用户分享 时间:2025/5/25 22:16:36 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

数学分析(二)试卷1

一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题5分,

共35分)

1、 函数f(x)在[a,b]上可积的必要条件是( )

A 连续 B 有界 C 无间断点 D 有原函数 2、函数f(x)是奇函数,且在[?a,a]上可积,则( ) A C

???a?aaf(x)dx?2?f(x)dx B

0a?a?aaf(x)dx?0 f(x)dx?2f(a)

?af(x)dx??2?f(x)dx D

0a??a3、 下列广义积分中,收敛的积分是( ) A

101xdx B

?????11xdx C

???0sinxdx D

1??1x3dx

14、级数

?an?1n收敛是

?an?1n部分和有界的( )

A 必要条件 B 充分条件 C充分必要条件 D 无关条件 5、下列说法正确的是( ) A

?an?1??n和

?bn?1??n收敛,

?abn?1??nn也收敛

B

?an?1?n和

?bn?1n发散,

??(an?1n?bn)发散

C

?an?1?n收敛和

?bn?1?n发散,

?(an?1??n?bn)发散

D

?an?1?n收敛和

?bn?1n发散,

?abn?1nn发散

6、

?an?1?'nn(x)在[a,b]收敛于a(x),且an(x)可导,则( )

A

?an?1?(x)?a'(x) B a(x)可导

b?C

??n?1baan(x)dx??a(x)dx D

a?an?1n(x)一致收敛,则a(x)必连续

1

7、下列命题正确的是( ) A

?an?1??n(x)在[a,b]绝对收敛必一致收敛

B

?an?1n(x)在[a,b]一致收敛必绝对收敛

?C 若lim|an(x)|?0,则

n???an?1n(x)在[a,b]必绝对收敛

D

?an?1?n(x)在[a,b]条件收敛必收敛

二、计算题:(每小题10分,共30分)

1、

?91f(x)dx?4,求

?20xf(2x2?1)dx

2、计算

???01dx 22?2x?x1p?2p???np(p?0) 3、limp?1n??n三、讨论与验证题:(每小题7分,共14分)

1、 讨论

?(?1)n?2??n?12nsin2nx的敛散性 n(?1)nsinnx2、 判断?的一致收敛性 2n?1n?1四、证明题:(每小题7分,共21分)

1、设Sn(x)?x,证明{Sn(x)}在(??,??)上一致收敛 221?nx2、设f(x)在[0,1]连续,证明

??0xf(sinx)dx??2?0?f(sinx)dx,并求

?

?0xsinxdx

1?cos2x3、设f(x)是以T为周期的函数,且在[0,T]上可积,证明

?a?Taf(x)dx??f(x)dx

0T2

参考答案

一、1、B 2、B 3、A 4、B 5、C 6、D 7、D

1222f(2x?1)d(2x?1), ?02?021922令u?2x?1,?xf(2x?1)dx??f(u)du?2

021二、1、

2xf(2x2?1)dx?2、

???0AA11?dx= limd(1?x)?limarctan(1?x)?A????01?(1?x)2A??02?2x?x2411p?2p???np11p2pnp1p?3、lim lim(???)?xdx?p?1ppp?0n??n??nnnp?1nn三、1、由于limn|(?1)n??2n?12nsin2nx|?2sin2x,即2sin2x?1级数绝对收敛2sin2x?1n条件收敛,2sinx?1级数发散,所以原级数发散

(?1)nsinnx12、,由weierstrass判别法原级数一致收敛性 ?n2?1n2四、1、证明:因为Sn(x)?S(x)?0,因为Sn(x)?S(x)?x1?n2x2?1,???0,2n??,对一切x?(??,??)成立,所以取N???,当n?N时,Sn(x)?S(x)?2n2????1?1{Sn(x)}在(??,??)上一致收敛

2、令x???t

?00??xf(sinx)dx???(??t)f(sin(??t))dt???f(sint)dt??tf(sint)dt得证

?00???0xsinx??sinx?2dx??dx? 220281?cosx1?cosx3、

?a?Taf(x)dx??f(x)dx??f(x)dx??a0a00Ta?TTaf(x)dx(1)

?a?TTf(x)dxx?T?t?f(t?T)d(t?T)??f(t)dt(2)

0将式(2)代入(1)得证

3

搜索更多关于: 数学分析(二)试卷1 的文档
数学分析(二)试卷1.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c33nxr1o4w75dq8n1sb5m_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top