第一范文网 - 专业文章范例文档资料分享平台

2019年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

来源:用户分享 时间:2025/8/22 12:57:45 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

要证(1)++≤a2+b2+c2;因为abc=1. 就要证:

+

+

≤a2+b2+c2;

即证:bc+ac+ab≤a2+b2+c2; 即:2bc+2ac+2ab≤2a2+2b2+2c2; 2a2+2b2+2c2﹣2bc﹣2ac﹣2ab≥0 (a﹣b)2+(a﹣c)2+(b﹣c)2≥0; ∵a,b,c为正数,且满足abc=1.

∴(a﹣b)2≥0;(a﹣c)2≥0;(b﹣c)2≥0恒成立;当且仅当:a=b=c=1时取等号. 即(a﹣b)2+(a﹣c)2+(b﹣c)2≥0得证. 故++≤a2+b2+c2得证.

(2)证(a+b)3+(b+c)3+(c+a)3≥24成立; 即:已知a,b,c为正数,且满足abc=1. (a+b)为正数;(b+c)为正数;(c+a)为正数; (a+b)3+(b+c)3+(c+a)3≥3(a+b)(b+c)?(c+a)?;

当且仅当(a+b)=(b+c)=(c+a)时取等号;即:a=b=c=1时取等号; ∵a,b,c为正数,且满足abc=1. (a+b)≥2

;(b+c)≥2

;(c+a)≥2

当且仅当a=b,b=c;c=a时取等号;即:a=b=c=1时取等号; ∴(a+b)3+(b+c)3+(c+a)3≥3(a+b)(?b+c)(?c+a)≥3×8=24;

当且仅当a=b=c=1时取等号;

故(a+b)3+(b+c)3+(c+a)3≥24.得证. 故得证.

【点评】本题考查重要不等式和基本不等式的运用,分析法和综合法的证明方法.

?

?

=24abc

第25页(共25页)

2019年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c33ot26gm15423gj8gje700kc5204u900kct_7.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top