??m?DM?0??1???a?2?c?0,则? ???a?b?0,??m?DB?0取c?1??,则m??2?,2?,1??.
??∴|cosm,AE|?2, 2即
22???222?2?2?2?2?(1??)22?21???或?1. 23∵??0,∴??1. 320.解:(1)设Q(x,y), 由AM??AD,DN??DC, 求得M(?2,2?),N(4??2,2), ∵kQA?kAN?∴kQA?kQB?∴
1?,kQB?kBM??, 2?21???1??????, 2??2?4yy1???, x?2x?24x2?y2?1(?2?x?0,0?y?1). 整理得4x21?y2?1. 可知点Q的轨迹为第二象限的椭圆,由对称性可知曲线P的轨迹方程为44(2)设E?x1,y1?,F(x2,y2),当直线EF斜率存在且不为零时,设直线EF的斜率为k,把y?k(x?3)代
2222入椭圆方程,化简整理得1?4kx?83kx?12k?4?0.
??83k2??16(k?1)?0,x1?x2?,
1?4k2212k2?4x1x2?. 21?4k
∴EF?1?kx1?x2
2?(1?k)?x1?x2?2?241?k2?4x1x2?. 21?4k???∵EF?GH,
4(1?k2)1∴把k换成?,即得GH?.
4?k2k1141?k24(1?k2)?∴S?EF?GH?? 22221?4k4?k8(1?k2)2?, 22(1?4k)4?k????41?k241?k2EF?GH?? 221?4k4?k1?20(1?k2)2?1?4(1?k)???, 22?224?k?1?4k4?k?1?4k2????????∴S82??. EF?GH205当直线EF斜率不存在或为零时, S2?.
EF?GH5∴
S2为定值.
EF?GH5x2?(a?1)x?2a?1x?121.解:(1)易知f'(x)?e, 2?x?1?设g?x??x?(a?1)x?2a?1,
2若f(x)有极值点,
则g?x??0有两个不相等的实根, ∴??a?6a?5?0, ∴a??5或a??1,
2
此时,g?1??g?3??(?a?1)(a?5)
??(a?1)(a?5)?0,
3?内. ∴g?x?有两个零点,且有一个在区间?1,3?内. 即f?x?有一个极值点在区间?1,(2)由a??1,x?1,得a?x?x?1?0, 得
x?a?1, x?1x?ax?1?f?x??e?ex?1.
x?1x?1∴只需证e令??x??e?1??x?1?lnx??x?1?.
?2??x, ?1?e0?1?0. x?1则?'(x)?ex?1∴当x?1时,?(x)为增函数, ∴?(x)??(1)?0,即e∴只需证x?x?1?x.
?1?x?1?lnx?(x?1), ?2?1lnx?x?1?, 21令h(x)?x?1?lnx
2即证x?1?则h'(x)?12x?1?2xx?1?0, 2x∴当x?1时,h(x)为增函数, ∴h(x)?h(1)?0,即x?1?∴原不等式成立.
22.解:(1)由??2sin?,得??2?sin?, 将??x?y,?sin??y,
22221lnx. 2
代入整理得x?y?2y?0. (2)把x?y?2y?0中的x换成即得曲线D的直角坐标方程设直线l的参数方程为?2222x, 2x?y2?2y?0. 4?x?2?tcos?,(t为参数,???0,??),
?y?tsin?代入曲线D的方程,整理得
?cos2??4sin2?t2??4cos??8sin??t?4?0,
???(4cos??8sin?)2?16(cos2??4sin2?)?0
?cos?sin??0.
设A,B两点所对应的参数分别为t1,t2, 则t1,t2为上述方程的两个根. 由t1t2?4?0, cos2??4sin2?得MA,MB同向共线. 故由MA?MB?t1t2?4?2 cos2?4sin2??sin2??12?tan???. 322, 2由cos?sin??0,得tan???即直线l的斜率为?2. 211??111??123.解:(1)由柯西不等式,得?2?2?2?a2?b2?c2???a??b??c??9,
bc??abc??a??2当且仅当a?b?c?3时,取等号. 3
相关推荐: