绝密★启用前
广东省2019届高三六校第一次联考试题
理科数学
命题学校:深圳实验学校
本试卷共6页,23小题,满分150分。考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。将条
形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选项出每小题答案后,用2B铅笔在答题卡上将对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目定区域内相应位置上;如需要改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只
有一项是符合题目要求的。
2???1?,B?{x|2x?1},则(?RA)?B? 1.已知集合A??x|?x?1? A.[?1,0) B.(?1,0) C.(??,0)
2.若复数z满足zi?1?2i,则z的共轭复数的虚部为
A.2i
B.i
C.1
D.2
D.(??,?1)
3.记Sn为等差数列{an}的前n项和.若S5?2S4,a2?a4?8,则a5?
A.6
B.7
C.8
D.10
????????????????4.在区间[?π,π]上随机取两个实数a,b,记向量OA?(a,4b),OB?(4a,b),则OA?OB?4π2的
概率为
π3π D.1? 24x2y25.已知直线l的倾斜角为45?,直线l与双曲线C:2?2?1(a?0,b?0)的左、右两支分别交
abA.1?B.1?C.1?于M、N两点,且MF1、NF2都垂直于x轴(其中F1、F2分别为双曲线C的左、右焦点),则该双曲线的离心率为 A.3 B.5 C.5?1
D.π 8π 4????????????6.在△ABC中,D为AB的中点,点E满足EB?4EC,则ED?
?4?????5????5???4??? A.AB?AC B.AB?AC
6336????????????5445???? C.AB?AC D.AB?AC
6336理科数学试题 第1页(共10页)
5?1 27.某几何体的三视图如右图所示,数量单位为cm,它的体积是
2733cm A.2933cm C.2
9
B.cm3
227D.cm3
223334??8.已知A是函数f(x)?sin?2018x???cos?2018x??的最大值,
6?3???????若存在实数x1,x2使得对任意实数x总有f(x1)?f(x)?f(x2)成立,则A?|x1?x2|的最小值为 A.
π 2018B.
π 1009C.
2π 1009D.
π 40369.定义在R上的函数f(x)满足f(x)?f(2?x)及f(x)??f(?x),且在[0,1]上有f(x)?x2, 则f(2019)?
A.
129 4B.
1 45 4C.?
94D.?
1410.抛物线y?2x2上有一动弦AB,中点为M,且弦AB的长度为3,则点M的纵坐标的最小值为
A.
11 8B.C.
3 2D.1
11.已知三棱锥P?ABC中,AB?BC,AB?22,BC?3,PA?PB?32,且二面角
?C P?AB的大小为150?,则三棱锥P?ABC外接球的表面积为
A.100π
B.108π
C.110π
D.111π
12.已知数列{an}满足a1?2a2?3a3???nan?(2n?1)?3n.设bn?和.若Sn??(常数),n?N*,则?的最小值是 A.
4n,Sn为数列{bn}的前n项anD.
3 2B.
9 4C.
31 1231 18二、填空题:本题共4小题,每小题5分,共20分。
?x?2y?5?0,?13.若x,y满足约束条件?x?3y?5?0, 则z?x2?y2的最大值为 .
?2x?y?5?0.?14.若a??(2sinx?cosx)dx,则(?x)6的展开式中常数项为 .
0?ax15.已知点P(?1,2)及圆(x?3)2?(y?4)2?4,一光线从点P出发,经x轴上一点Q反射后与圆相
切于点T,则|PQ|?|QT|的值为 .
3216.已知函数f(x)?x?ax?bx满足f(1?x)?f(1?x)?22?0,则f(x)的单调递减区间是
.
理科数学试题 第2页(共10页)
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,
每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。 17.(12分)
2222在△ABC中,角A,B,C的对边分别为a,b,c,且a?c?b?abcosA?acosB.
(1)求角B; (2)若b?27,tanC?
18.(12分)
如图甲,设正方形ABCD的边长为3,点E、F分别在AB、CD上,且满足AE?2EB,
3,求△ABC的面积. 2CF?2FD.如图乙,将直角梯形AEFD沿EF折到A1EFD1的位置,使得点A1在平面BEFC上的射影G恰好在BC上.
(1)证明:A1E?平面CD1F;
(2)求平面BEFC与平面A1EFD1所成二面角的余弦值.
ADFEEBFA1D1CB图甲G图乙C理科数学试题 第3页(共10页)
19.(12分)
某市大力推广纯电动汽车,对购买用户依照车辆出厂续驶里程R的行业标准,予以地方财政补贴.其补贴标准如下表:
出厂续驶里程R(公里) 补贴(万元/辆)
3 4 4.5
0.006频率组距0.0050.0040.0030.0020.001150?R?250 250?R?350 R?350 0150200250300350400450持续里程R(公里)2017年底随机调査该市1000辆纯电动汽车,统计其出厂续驶里程R,得到频率分布直方图如上图所示.用样本估计总体,频率估计概率,解决如下问题: (1)求该市每辆纯电动汽车2017年地方财政补贴的均值;
(2)某企业统计2017年其充电站100天中各天充电车辆数,得如下的频数分布表:
辆数 天数 [5500,6500) 20 [6500,7500) 30 [7500,8500) 40 [8500,9500) 10 (同一组数据用该区间的中点值作代表)
2018年2月,国家出台政策,将纯电动汽车财政补贴逐步转移到充电基础设施建设上来.该企业拟将转移补贴资金用于添置新型充电设备.现有直流、交流两种充电桩可供购置.直流充电桩5万元/台,每台每天最多可以充电30辆车,每天维护费用500元/台; 交流充电桩1万元/台,每台每天最多可以充电4辆车,每天维护费用80元/台.
该企业现有两种购置方案:
方案一:购买100台直流充电桩和900台交流充电桩; 方案二:购买200台直流充电桩和400台交流充电桩.
假设车辆充电时优先使用新设备,且充电一辆车产生25元的收入,用2017年的统计数据,分别估计该企业在两种方案下新设备产生的日利润.(日利润?日收入?日维护费用).
理科数学试题 第4页(共10页)
相关推荐: