第一范文网 - 专业文章范例文档资料分享平台

最新高中数学知识点汇总(表格格式) - 图文

来源:用户分享 时间:2025/5/19 20:41:19 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

最新高中数学知识点汇总(表格格式)

高中数学知识汇总

1.集合与常用逻辑用语 概念 关系 集合 运算 一组对象的全体. x?A,x?A。 子集 真子集 相等 交集 并集 补集 概念 集合与常用逻辑常用用语 逻辑用语 元素特点:互异性、无序性、确定性。 ??A; x?A?x?B?A?B。 x?A?x?B,?x0?B,x0?A?A?B A?B,B?C?A?C n个元素集合子集数2n。 A?B,B?A?A?B AIB??x|x?A,且x?B? CU(AUB)?(CUA)I(CUB) AUB??x|x?A,或x?B? CU(AIB)?(CUA)U(CUB) CU(CUA)?A CUA??x|x?U且x?A? 能够判断真假的语句。 原命题:若p, 则q 原命题与逆命题, 否命题与逆否命题互逆;原命题与否命题、逆命题与逆逆命题:若q, 则p 命题 四种 否命题:若?p, 则?q 否命题互否;原命题与逆否命题、否命命题 题与逆命题互为逆否。互为逆否的命题逆否命题:若?q, 则?p 等价。 p?q, p是q的充分若命题p对应集合A, 命题q对应充分条件 条件 集合B, 则p?q等价于A?B, p?q, q是p的必要p?q等价于A?B。 充要 必要条件 条件 条件 p?q, p,q互为充要充要条件 条件 p?q, p,q有一为真即为真, p,q均为假时类比集合的并 或命题 才为假。 逻辑 p?q, p,q均为真时才为真, p,q有一为假类比集合的交 且命题 连接词 即为假。 类比集合的补 ?p和p为一真一假两个互为对立的命题。 非命题 全称量词 ?, 含全称量词的命题叫全称命题, 其否定为特称命题。 量词 存在量词 ?, 含存在量词的命题叫特称命题, 其否定为全称命题。 2.复数 规定:i2??1;实数可以与它进行四则运算, 并且运算时原有的虚数单位 加、乘运算律仍成立。i4k?1,i4k?1?i,i4k?2??1,i4k?3??i(k?Z)。 形如a?bi(a,b?R)的数叫做复数, a叫做复数的实部, b概念 复数 叫做复数的虚部。b?0时叫虚数、a?0,b?0时叫纯虚数。 复数 a?bi?c?di(a,b,c,d?R)?a?c,b?d 复数相等 共轭复数 加减法 运算 乘法 实部相等, 虚部互为相反数。即z?a?bi, 则z?a?bi。 (a?bi)?(c?di)?(a?c)?(b?d)i, (a,b,c,d?R)。 (a?bi)(c?di)?(ac?bd)?(bc?ad)i, (a,b,c,d?R) 第 1 页 共 24 页

除法 几何意义 (a?bi)?(c?di)?一一对应uuur?复平面内的点Z(a,b)?????向量OZ 复数z?a?bi????uuur向量OZ的模叫做复数的模, z?a2?b2 一一对应ac?bdbc?da?i(c?di?0,a,b,c,d?R) c2?d2c2?d2大多数复数问题, 主要是把复数化成标准的z?a?bi的类型来处理, 若是分数形式z=a?bi, 则首先要进行分母实数化(分母乘以自己的共轭复数), 在进行四则运算时, 可c?di以把i看作成一个独立的字母, 按照实数的四则运算律直接进行运算, 并随时把i2换成-1 3.平面向量 重要概念 r0向量 平行向量 向量夹角 投影 向量 既有大小又有方向的量, 表示向量的有向线段的长度叫做该向量的模。 r长度为0, 方向任意的向量。【0与任一非零向量共线】 方向相同或者相反的两个非零向量叫做平行向量, 也叫共线向量。 重要法则定理 基本定理 共线条件 垂直条件 法则 加法 运算 算律 减法 法则 运算 分解 概念 rrrr起点放在一点的两向量所成的角, 范围是?0,??。a,b的夹角记为?a,b?。 rrrrr?a,b???, bcos?叫做b在a方向上的投影。【注意:投影是数量】 rrrrrrre1,e2不共线, 存在唯一的实数对(?,?), 使a??e1??e2。若e1,e2为rx,y轴上的单位正交向量, (?,?)就是向量a的坐标。 平面向量 rrrra,b(b?0共线?存在唯一实数?, (x1,y1)??(x2,y2)?x1y2?x2y1 rra??b rrrrx1y1?x2y2?0。 a?b?agb?0。 rrrra?b?(x1?x2,y1?y2)。 a?b的平行四边形法则、三角形法则。 rrrra?b?b?a, rrrrrr与加法运算有同样的坐标表示。 (a?b)?c?a?(b?c) rrrra?b?(x1?x2,y1?y2) a?b的三角形法则。 uuuuruuuuruuuruuuurMN?(xN?xM,yN?yM)。 MN?ON?OM。 rr??a为向量, ??0与a方向相同, rrrr?a?(?x,?y)。 ??0与a方向相反, ?a??a。 一般表示 坐标表示(向量坐标上下文理解) 各数乘 种运算 运算律 算 概念 数量积运算 主要性质 ?(?a)?(??)a, (???)a??a??a, rrrrrragb?a?bcos?a,b? rrr2rrrraga?a, agb?a?b。 与数乘运算有同样的坐标表示。 ?(a?b)??a??b rragb?x1x2?y1y2。 ra?x2?y2, 22x1x2?y1y2?x12?y12?x2?y2算律 rrrrrrrrrragb?bga, (a?b)gc?agc?bgc, 与上面的数量积、数乘等具有同样rrrrrr的坐标表示方法。 (?a)gb?ag(?b)??(agb)。 圆的方程 第 2 页 共 24 页 圆心 半径

x 2+ y 2= r 2 标准方程 2 2 2(0, 0) r r 1D2?E2?4F 2(x – a ) + ( y – b ) = r (a, b) 一般方程 x 2 + y 2 +D x + E y + F = 0 ?DE???,?? ?22?

4.算法、推理与证明 顺序结构 逻辑条件结构 结构 循环结构 算法 基本语句 依次执行 根据条件是否成立有不同的流向 按照一定条件反复执行某些步骤 输入语句、输出语句、赋值语句、条件语句、循环语句。 归纳推理 推理 合情推理 类比推理 由部分具有某种特征推断整体具有某种特征的推理。 程序框图, 是一种用程? 序框、流程线及文字说明来表示算法的图形。 由一类对象具有的特征推断与之相似对象的某种特征的推理。 演绎推理 根据一般性的真命题(或逻辑规则)导出特殊性命题为真的推理. 综合法 由已知导向结论的证明方法。 推理直接证明 与 数学分析法 由结论反推已知的证明方法。 证明 证明 间接证明 主要是反证法, 反设结论、导出矛盾的证明方法。 数学归纳法是以自然数的归纳公理做为它的理论基础的, 因此, 数学归纳法数学 的适用范围仅限于与自然数有关的命题。分两步:首先证明当n取第一个值n0(例如归纳n0=1)时结论正确;然后假设当n=k(k?N?,k?n0)时结论正确, 证明当n=k+1法 时结论也正确. 5.不等式、线性规划 (1)a?b,b?c?a?c; (2)a?b,c?0?ac?bc;a?b,c?0?ac?bc; (3)a?b?a?c?b?c; 不等式的性质 (4)a?b,c?d?a?c?b?d; (5)a?b?0,c?d?0?ac?bd; (6)a?b?0,n?N,n?1?a?b;a?b 一元二次不等式 *nnnn两个实数的顺序关系: a?b?a?b?0 a?b?a?b?0 a?b?a?b?0 a?b?11?的充要条件ab是ab?0。 解一元二次不等式实际上就是求出对应的一元二次方程的实数根(如果有实数根), 再结合对应的函数的图象确定其大于零或者小于零的区间, 在含有字母参数的不等式中还要根据参数的不同取值确定方程根的大小以及函数图象的开口方向, 从而确定不等式的解集. 第 3 页 共 24 页

基本 不等式 a?b 2(a?0,b?0) ab?a?b?2ab(a,b?0);ab?(a?b2;)(a,b?R)2a2?b22aba?b22≤ab≤≤(a,b?0);a?b?2ab。 2a?b2二元一次不等式Ax?By?C?0的解集是平面直角坐标系中表示Ax?By?C?0某一侧所二元一次有点组成的平面区域。二元一次不等式组的解集是指各个不等式解集所表示的平面区域的公不等式组 共部分。 6.计数原理与二项式定理 分类加法类方案中有m2种不同的方法, …, 在第n类方案中有mn种不同的方计数原理 法.那么完成这件事共有N?m1?m2?L?mn种不同的方法. 分步乘法第2步有m2种不同的方法……做第n步有mn种不同的方法.那么完成这件事共计数原理 有N?m1?m2?????mn种不同的方法. 完成一件事情, 需要分成n个步骤, 做第1步有m1种不同的方法, 做完成一件事有n类不同方案, 在第1类方案中有m1种不同的方法, 在第2基本原理 从n个不同元素中取出m(m?n)个元素, 按照一定的次序排成一列, 叫定义 排列排列 组合二项式定理 组合 做从从n个不同元素中取出m(m?n)个元素的一个排列, 所有不同排列的个m数, 叫做从n个不同元素中取出m(m?n)个元素的排列数, 用符号An表示。 排列数 公式 mAn?n(n?1)(n?2)L(n?m?1)?n!(n,m?Ν,m?n), 规定(n?m)!定义 0!?1. 从n个不同元素中, 任意取出m(m?n)个元素并成一组叫做从n个不同元素中取出m(m?n)个元素的组合, 所有不同组合的个数, 叫做从n个不同元素中取出m(m?n)个元素的组合数, 用符号Cmn表示。 mAnn(n?1)L(n?m?1)m, Cn?m. C?m!Ammnmn?mmmm?1Cn?Cn(m,n?N,且m?n);Cn?1?Cn?Cn(m,n?N,且m?n). 0n1n?1rn?rrnnr(a?b)n?Cna?Cnab?L?Cnab?L?Cnb(Cn叫做二项式系数) 组合数 公式 性质 定理 二项式定理 rn?rr通项公式 Tr?1?Cnab(其中0?k?n,k?N,n?N?) 系数和 公式 012rnn?1;Cn?Cn?Cn???Cn???Cn?2Crr?Crr?1?Crr?2???Cnr?Cnr?1;135024123nCn?Cn?Cn?L?Cn?Cn?Cn?L2n?1;Cn?2Cn?3Cn?L?nCn?n2n?1. 7.函数﹑基本初等函数I的图像与性质 基本初等函数指数函数 y?ax 0?a?1 (??,??)单调递减, x?0时y?1, x?0时0?y?1 第 4 页 共 24 页

函数图象过定点(0,1)

Ⅰ a?1 对数函数 y?logax (??,??)单调递增, x?0时0?y?1, x?0时y?1 在(0,??)单调递减, 0?x?1时y?0, x?1时0?a?1 a?1 y?0 在(0,??)单调递增, 0?x?1时y?0, x?1时函数图象过定点(1,0) y?0 在在(0,??)单调递增, 图象过坐标原点 在在(0,??)单调递减 函数图象过定点(1,1) 幂函数 ??0 y?x ???0 8. 函数与方程﹑函数模型及其应用 概念 方程f(x)?0的实数根。方程f(x)?0有实数根?函数y?f(x)的图象与x轴有交点?函数y?f(x)有零点. 图象在[a,b]上连续不断, 若f(a)f(b)?0, 则y?f(x)在(a,b)内存在零点。 函数零点 存在定理 对于在区间?a,b?上连续不断且f?a??f?b??0的函数y?f?x?, 通过不断把函方法 数f?x?的零点所在的区间一分为二, 使区间的两个端点逐步逼近零点, 进而得到零点近似值的方法叫做二分法. 第一步 确定区间?a,b?, 验证f(a)?f(b)?0, 给定精确度?。 求区间?a,b?的中点c; 二 分 法 步骤 第二步 计算f?c?:(1)若f?c??0, 则c就是函数的零点;(2)若;(3)若f?a??f?c??0, 则令b?c(此时零点x0??a,c?)第三步 .(4)判断是否达f?c??f?b??0, 则令a?c(此时零点x0??c,b?)到精确度?:即若a?b??, 则得到零点近似值a(或b);否则重复(2)~(4). 概念 函数建模 解题步骤 把实际问表达的数量变化规律用函数关系刻画出来的方法叫作函数建模。 阅读审题 分析出已知什么, 求什么, 从中提炼出相应的数学问题。 数学建模 弄清题目中的已知条件和数量关系, 建立函数关系式。 第 5 页 共 24 页

最新高中数学知识点汇总(表格格式) - 图文.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c355ch27mi286wqu5roq73pebe0ioab00llx_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top