学习资料
小明妈妈买了一部29 in(74 cm)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58 cm长和46 cm宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?
意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.
效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.
第四环节:课堂小结
内容: 教师提问:
1.这一节课我们一起学习了哪些知识和思想方法? 2.对这些内容你有什么体会?与同伴进行交流. 在学生自由发言的基础上,师生共同总结:
1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a,b,c222分别表示直角三角形的两直角边和斜边,那么a?b?c.
2.方法:(1) 观察—探索—猜想—验证—归纳—应用; (2)“割、补、拼、接”法.
3.思想:(1) 特殊—一般—特殊; (2) 数形结合思想.
意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.
效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.
第五环节:布置作业
内容:布置作业:1.教科书习题1.1.
2.观察下图,探究图中三角形的三边长是否满足a2?b2?c2?
a 各种学习资料,仅供学习与交流cbacb学习资料
意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进一步认识勾股定理的前提条件.
效果:学生进一步加强对本课知识的理解和掌握.
五、教学设计反思 (一)设计理念
依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.
(二)突出重点、突破难点的策略
为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.
第一章 勾股定理
1. 探索勾股定理(第2课时)
一、学生起点分析
学生的知识技能基础:学生在七年级已经学习了整式的加、减、乘、除运算和等式的基本性质,并能进行简单的恒等变形;上节课又已经通过测量和数格子的方法,对具体的直角三角形探索并发现了勾股定理,但没有对一般的直角三角形进行验证.
学生活动经验基础:学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流
各种学习资料,仅供学习与交流
学习资料
的能力;学生在七年级《七巧板》及《图案设计》的学习中已经具备了一定的拼图活动经验.
二、教学任务分析
本节课是八(上)勾股定理第1节第2课时,是在上节课已探索得到勾股定理之后的内容,具体学习任务:通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,体会勾股定理的应用价值并逐步培养学生应用数学解决实际问题意识和能力 ,为后面的学习打下基础.为此本节课的教学目标是:
1.掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.
2.在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.
3.在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.
用面积法验证勾股定理,应用勾股定理解决简单的实际问题是本节课的重点.
三、教学过程
本节课设计了七个教学环节:(一)复习设疑,激趣引入;(二)小组活动,拼图验证;(三)延伸拓展,能力提升 (四) 例题讲解,初步应用;(五) 追溯历史,激发情感;;(六) 回顾反思,提炼升华;(七) 布置作业,课堂延伸.
第一环节: 复习设疑,激趣引入
内容:教师提出问题:
(1)勾股定理的内容是什么?(请一名学生回答)
(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.
意图:(1)复习勾股定理内容;(2)回顾上节课探索过程,强调仍需对一般的直角三
角形进行验证,培养学生严谨的科学态度;(3)介绍世界上有数百种验证方法,激发学生兴趣.
效果:通过这一环节,学生明确了:仅仅探索得到勾股定理还不够,还需进行验证.
当学生听到有数百种验证方法时,马上就有了去寻求属于自己的方法的渴望.
各种学习资料,仅供学习与交流
学习资料
第二环节:小组活动,拼图验证.
内容: 活动1: 教师导入,小组拼图.
教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全
等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后再4人小组讨论.)
活动2:层层设问,完成验证一.
学生通过自主探究,小组讨论得到两个图形:
图1
图2
在此基础上教师提问:
(1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);
(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书(a+b)=4×
1ab+c2.并得到a2?b2?c2) 22
从而利用图1验证了勾股定理. 活动3 : 自主探究,完成验证二.
教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算
的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?
(学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二) 意图:设计活动1的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验证作铺垫,同时也培养学生的动手、创新能力.在活动2中,学生在教师的层层设问引导下完成对勾股定理的验证,完成本节课的一个重点内容.设计活动3,让学生利用另一个拼图独立验证勾股定理的目的是让学生再次体会数形结合的思想并体会成功的快乐.
效果:学生通过先拼图从形上感知,再分析面积验证,比较容易地掌握了本节课的重点内容之一,并突破了本节课的难点.
第三环节 延伸拓展,能力提升
各种学习资料,仅供学习与交流
相关推荐: