阅读后学生回答:
1.质谱仪由静电加速极、速度选择器、偏转磁场、显示屏等组成。
2.电荷量相同而质量有微小差别的粒子,它们进入磁场后将沿着不同的半径做圆周运动,打到照相底片不同的地方,在底片上形成若干谱线状的细条,叫质谱线,每一条对应于一定的质量,从谱线的位置可以知道圆周的半径r,如果再已知带电粒子的电荷量q,就可算出它的质量。
3.质子数相同而质量数不同的原子互称为同位素。 4.质谱仪最初是由汤姆生的学生阿斯顿设计。
5.质谱仪是一种十分精密的仪器,是测量带电粒子的质量和分析同位素的重要工具。 2.回旋加速器 (1)直线加速器
①加速原理:利用加速电场对带电粒子做正功使带电的粒子动能增加,即qU =ΔEk ②直线加速器的多级加速:教材图3.6—5所示的是多级加速装置的原理图,由动能定理可知,带电粒子经N级的电场加速后增加的动能,ΔEk=q(U1+U2+U3+U4+…Un)
③直线加速器占有的空间范围大,在有限的空间内制造直线加速器受到一定的限制。 (2)回旋加速器
①由美国物理学家劳伦斯于1932年发明。
②其结构教材图3.6—6所示。核心部件为两个D形盒(加匀强磁场)和其间的夹缝(加交变电场)
③加速原理:通过“思考与讨论”让学生自己分析出带电粒子做匀速圆周运动的周期公式T = 2πm/q B,明确带电粒子的周期在q、m、B不变的情况下与速度和轨道半径无关,从而理解回旋加速器的原理。
在学生思考之后,可作如下的解释:如果其他因素(q、m、B)不变,则当速率v加大时,由r=mv/qB得知圆运动半径将与v成正比例地增大,因而圆运动周长2?r?也将与v成正比例地增大,因此运动一周的时间(周期)仍将保持原值。
最后提到了回旋加速器的效能(可将带电粒子加速,使其动能达到25 MeV~30 MeV),为狭义相对论埋下了伏笔。
老师再进一步归纳各部件的作用:(如图)
磁场的作用:交变电场以某一速度垂直磁场方向进入匀强磁场后,在洛伦兹力的作用下
2?mvqB
做匀速圆周运动,其周期在q、m、B不变的情况下与速度和轨道半径无关,带电粒子每次进入D形盒都运动相等的时间(半个周期)后平行电场方向进入电场加速。
电场的作用:回旋加速器的的两个D形盒之间的夹缝区域存在周期性变化的并垂直于两个D形盒正对截面的匀强电场,带电粒子经过该区域时被加速。
交变电压的作用:为保证交变电场每次经过夹缝时都被加速,使之能量不断提高,须在在夹缝两侧加上跟带电粒子在D形盒中运动周期相同的交变电压。
带电粒子经加速后的最终能量:(运动半径最大为D形盒的半径R) 由R=mv/qB有 v=qBR/m 所以最终能量为 Em=mv/2 = qBR/2m 讨论:要提高带电粒子的最终能量,应采取什么措施?(可由上式分析)
例:1989年初,我国投入运行的高能粒子回旋加速器可以把电子的能量加速到2.8GeV;若改用直线加速器加速,设每级的加速电压为U =2.0×10V,则需要几级加速? 解:设经n级加速,由neU=E 有 n=E/eU=1.4×10(级) (三)对本节要点做简要小结。
(四)巩固新课:1、复习本节内容;
2、“问题与练习”2、4练习,3作业。
4
5
2222
相关推荐: