Tn?1??11??11?1??1?11?n?1????...????? ??????????2??35??57??2n?12n?3??2?32n?3?3(2n?3)an?13?2n?14??6n?9?126??12n??102 Tnnn(2)tTn?an?13,即t??42??42?126,???0,?102,?x?0?,根据双勾函数性质知:函数在?设f?x??12x?上单调递增,在??????22x????上单调递减.计算f?3??180,f?4??181.5,故当n?3时,12n?【举一反三】
(2020·重庆高三月考)已知数列?an?的前n项和为Sn,Sn?2an?n. (1)证明:?an?1?为等比数列; (2)设bn?log126?102有最小值为180.故t?180. n2an?1,若不等式
1111????????t对?n?N*恒成立,求t的最小值. b1b2b2b3b3b4bnbn?1【答案】(1)见解析(2)
1 4【解析】(1)an?Sn?Sn?1?2an?2an?1?1?an?1?2?an?1?1?(n?2), 故?an?1?为等比数列.
n?1nn(2)令n?1,则有S1?2a1?1?a1??1,所以an?1??a1?1??2??2,所以an?1?2,
令bn?log令cn?2an?1?log22n?2n,
11?11?????, bnbn?14?nn?1?所以
1111?111111?????????????...??? b1b2b2b3bnbn?14?1223nn?1?1?1?1111??1????t?.. 所以?4?n?1?44?n?1?44故t的最小值为
1. 4方向三 数列参与的不等式的证明问题
13 / 44
典例3.(2020·河南高三期末)已知数列?an?满足123nn???…??.
2a1?52a2?52a3?52an?53(1)求数列?an?的通项公式; (2)设数列??1?nT1?a?的前项和为n,证明:?T?1. nan?1?22n6【答案】(1)a3n?5n?2(2)证明见解析 【解析】(1)
123nn2a?2a??…??3,①
1?52?52a3?52an?5当n?1时,a1?4.
当n?2时,12a?2?5?32a?…?n?1?n?1,②
1?52a23?52an?1?53由①-②,得a3n?5n?2?n?2?, 因为a符合上式,所以a3n?51?4n?2.
(2)证明:1a?43n?5??3n?8??4?3?1?3n?5?1?3n?8?? nan?1?Tn?1a?1a?…?1 1a22a3anan?1?4??11??11?1?3?????8?11?????11?14???…???1?3n?5?1?3n?8??????43???1?8?3n?8??
因为0?13n?8?111,所以122?T?1n6. 典例4.(2020·江苏高三期末)已知数列?a?1n?满足ana?2?n?N*11?,且a1?2.
n?(1)求数列?an?的通项公式;
(2)设数列?a4n?的前n项和为Sn,求证:当n?2时,S2n?1?Sn?1?n?5. 【答案】(1)ann?n?1(2)证明见解析 14 / 44
【解析】(1)法一:Qa11?12,且an?a?2, n?1?112?a?2,?a22?,
23同样可求得a3?344,a4?5,
猜想:ann?n?1, 以下用数学归纳法证明
①当n?1时,a11?2?11?1,符合ann?n?1, ②假设n?k时,akk?1?k?N*k??, 则n?k?1时,a1kk?a?2,即?1?2, k?1k?1ak?1?1kk?a?2??1?2k?1,
k?1k?ak?1k?1?k?2符合ann?n?1, 综上:ann?n?1. 法二:由a1n?a?2得1?1?1?an, n?1an?1?1?an?1a?1?aan?11n,1?a?, n?1n?11?an即?1?111?a?,?1?1?1, n?11?an1?an?11?an???1??1?a?是等差数列,首项为2,公差为1,
n??11?a?n?1,则ann??1. nn(2)当n?2时,S2n?1?Sn?1?ann?12n?n?an?1?????a2n?1?n?1?n?2?????12n,法一:先证明x?(0,1)时,x?1?lnx,
15 / 44
1x?1令f(x)?x?1?lnx,x?(0,1),则f?(x)?1?x?x?0, ?f(x)?x?1?lnx,x?(0,1)为减函数,
则f(x)?f(1)?0,?x?(0,1)时,x?1?lnx.
?n?2时,
nnn?1??1n?2?????2n?12n????1?lnn?n?1??????1?lnn?1?n?2?????????2n?1??1?2n?? ?[1?lnn?ln(n?1)]?[1?ln(n?1)?ln(n?2)]?????[1?ln(2n?1)?ln(2n)] ?n?lnn?ln(2n)?n?ln2,
又Qe4?2.54?6.252?36?25,?4?5ln2,即ln2?45, ?n?ln2?n?45,
?n?2时,
nn?1n?1?n?2?????2n?12n?n?45, ?当n?2时,S42n?1?Sn?1?n?5.
法二:Qnn?12n?1111n?1?n?2????2n?1?n?1?1?n?2?????1?2n ?n???1?n?1?1n?2?????1?2n??,
?要证明
nn?12n?1?n?2?????n?12n?n?45(n?2), 即证
1n?1?114n?2?????2n?5, 设s?1n?1?1n?2?????12n, 则s?12n?12n?1?????1n?2?1n?1, ?2s???11??11?1??n?1?2n?????n?2?2n?1????????1?2n??n?1??
?2n?(n?1)(2n?1)?(n?2)((n?1)?2n?(n?2)?(2n?1)????n?1)?2n2n?(n?1)
?(3n?1)??111??(n?1)?2n?(n?2)?(2n?1)????2n?(n?1)??
由(n?k?1)?(2n?k)?2n(n?1)?2nk?k(n?k?1)?2n(n?1)?k(n?k?1)得:
16 / 44
相关推荐: