ÓÖÓÉ0£¼x1£¼x2£¼1£¬
Ôò£¨x1-x2£©£¼0£¬£¨1-x1x2£©£¾0£¬
ÔòÓÐf£¨x1£©-f£¨x2£©£¼0£¬Ôòº¯Êýf£¨x£©ÔÚ£¨0£¬1£©ÉÏΪÔöº¯Êý£® ¡¾½âÎö¡¿
£¨1£©¸ù¾ÝÌâÒ⣬ÓÉÆæº¯ÊýµÄÐÔÖʿɵÃf£¨0£©=
=0£¬Ôòn=0£¬ÓÖÓÉf£¨2£©=
=£¬
½â¿ÉµÃmµÄÖµ£¬½«m¡¢nµÄÖµ´úÈ뺯ÊýµÄ½âÎöʽ£¬¼ÆËã¿ÉµÃ´ð°¸£» £¨2£©¸ù¾ÝÌâÒ⣬Éè0£¼x1£¼x2£¼1£¬ÓÉ×÷²î·¨·ÖÎö¿ÉµÃ´ð°¸£®
±¾Ì⿼²éº¯ÊýµÄÆæÅ¼ÐÔÓëµ¥µ÷ÐÔµÄÐÔÖÊÒÔ¼°Ó¦Óã¬Éæ¼°µ¥µ÷ÐÔµÄÅжϣ¬ÊôÓÚ»ù´¡Ì⣮
19.¡¾´ð°¸¡¿£¨±¾ÌâÂú·ÖΪ12·Ö£©
½â£º£¨1£©f£¨x£©µÄ×îСÕýÖÜÆÚΪT==4¦Ð£»¡£¨4·Ö£© Áî+2k¦Ð¡Ü
¡Ü+2k¦Ð£¬k¡ÊZ£¬½âµÃ£º+4k¦Ð¡Üx¡Ü+4k¦Ð£¬k¡ÊZ£¬
¿ÉµÃµ¥µ÷µÝ¼õÇø¼äΪ£º[+4k¦Ð£¬+4k¦Ð]£¬k¡ÊZ£® £¨2£©ÁбíÈçÏ£º x y 0 - 0 2 ¦Ð -2 2¦Ð 0 0 Á¬Ïß³ÉͼÈçÏ£º
¡¾½âÎö¡¿
µÚ13Ò³£¬¹²17Ò³
£¨1£©ÀûÓÃÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖʼ´¿ÉÇó³öf£¨x£©µÄ×îСÕýÖÜÆÚÓëµ¥µ÷¼õÇø¼ä£» £¨2£©ÁбíÈçÏ£¬×÷³öËüÔÚ[0£¬4¦Ð]Éϵļòͼ¼´¿É£»
±¾ÌâÖ÷Òª¿¼²éÁËÎåµã·¨×÷º¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏ󣬿¼²éÁËÕýÏÒº¯ÊýµÄͼÏóºÍÐÔÖʵÄÓ¦Óã¬ÊôÓÚ»ù´¡Ì⣮
20.¡¾´ð°¸¡¿½â£º£¨¢ñ£©Í¶×ÊծȯÀàÎȽ¡ÐͲúÆ·µÄÊÕÒæÂú×㺯Êý£ºy=kx£¨x£¾0£©£¬
ÓÉÌâÖª£¬µ±x=1ʱ£¬y=0.125£¬Ôòk=0.125£¬¼´y=0.125x£¬ Ͷ×Ê¹ÉÆ±Àà·çÏÕÐͲúÆ·µÄÊÕÒæÂú×㺯Êý£º£¨x£¾0£©£¬ ÓÉÌâÖª£¬µ±x=1ʱ£¬y=0.5£¬Ôòk=0.5£¬¼´£¬ £¨¢ò£©ÉèͶ×ÊծȯÀàÎȽ¡ÐͲúÆ·xÍòÔª£¨0¡Üx¡Ü20£©£¬ÔòͶ×Ê¹ÉÆ±Àà·çÏÕÐͲúÆ·20-xÍòÔª£¬ ÓÉÌâÖª×ÜÊÕÒæ£¨0¡Üx¡Ü20£©£¬
2
Á£©£¬Ôòx=20-t£¬
£¬
µ±t=2£¬¼´x=16ʱ£¬ymax=3£¨ÍòÔª£©
´ð£ºÍ¶×ÊծȯÀàÎȽ¡ÐͲúÆ·16ÍòÔª£¬Í¶×Ê¹ÉÆ±Àà·çÏÕÐͲúÆ·4ÍòÔª£¬´ËʱÊÜÒæ×î´óΪ3ÍòÔª£® ¡¾½âÎö¡¿
£¨¢ñ£©ÓÉͶ×ÊծȯµÈÎȽ¡ÐͲúÆ·µÄÊÕÒæÓëͶ×ʶî³ÉÕý±È£¬Í¶×Ê¹ÉÆ±µÈ·çÏÕÐͲúÆ·µÄÊÕÒæÓëͶ×ʶîµÄËãÊõƽ·½¸ù³ÉÕý±È£¬½áºÏº¯ÊýͼÏó£¬ÎÒÃÇ¿ÉÒÔÀûÓôý¶¨ÏµÊý·¨À´ÇóÁ½ÖÖ²úÆ·µÄÊÕÒæÓëͶ×ʵĺ¯Êý¹ØÏµ£»
£¨¢ò£©ÓÉ£¨¢ñ£©µÄ½áÂÛ£¬ÎÒÃÇͶ×ÊծȯÀàÎȽ¡ÐͲúÆ·xÍòÔª£¨0¡Üx¡Ü20£©£¬ÔòͶ×Ê¹ÉÆ±Àà·çÏÕÐͲúÆ·20-xÍòÔª£®Õâʱ¿ÉÒÔ¹¹Ôì³öÒ»¸ö¹ØÓÚÊÕÒæyµÄº¯Êý£¬È»ºóÀûÓÃÇóº¯Êý×î´óÖµµÄ·½·¨½øÐÐÇó½â£®
º¯ÊýµÄʵ¼ÊÓ¦ÓÃÌ⣬ÎÒÃÇÒª¾¹ýÎöÌâ¡ú½¨Ä£¡ú½âÄ£¡ú»¹ÔËĸö¹ý³Ì£¬ÔÚ½¨Ä£Ê±Òª×¢Òâʵ¼ÊÇé¿ö¶Ô×Ô±äÁ¿xȡֵ·¶Î§µÄÏÞÖÆ£¬½âģʱҲҪʵ¼ÊÎÊÌâʵ¼Ê¿¼ÂÇ£®½«Êµ¼ÊµÄ×î´ó£¨Ð¡£©»¯ÎÊÌ⣬ÀûÓú¯ÊýÄ£ÐÍ£¬×ª»¯ÎªÇóº¯ÊýµÄ×î´ó£¨Ð¡£©ÊÇ×îÓÅ»¯ÎÊÌâÖУ¬×î³£¼ûµÄ˼·֮һ£®
21.¡¾´ð°¸¡¿½â£º¡ß=£¨2cosx£¬1£©£¬=£¨sinx+cosx£¬-1£©£¬
¡àf£¨x£©==2
=2cosx£¨
sinx+cosx£©-1
sinxcosx+2cos2x-1
µÚ14Ò³£¬¹²17Ò³
==2sin£¨2x+£©.
£¨1£©¡ßx¡Ê[0£¬]£¬ ¡à¡à-£¬
£¬
¡àº¯Êýf£¨x£©ÔÚÇø¼ä[0£¬]ÉϵÄ×î´óֵΪ2£¬×îСֵΪ-1£» £¨2£©Èôf£¨x0£©=£¬Ôò2sin£¨2x0+£©=£¬ ¡àsin£¨2x0+£©=£¬ ¡ßx0¡Ê[
]£¬
¡àcos£¨2x0+£©=-£¬ ¡àcos2x0=cos[£¨2x0+£©-]==
=
£»
£¨3£©¡ßy=f£¨¦Øx£©=2sin£¨2¦Øx+£©£¬ Áî-¿ÉµÃ£¬Áîk=0¿ÉµÃ£¬
¡Ü2¦Øx+
£¬k¡Êz£¬ £¬ £¬
£©ÉÏÊǵ¥µ÷µÝÔöº¯Êý£¬
¡ßy=f£¨¦Øx£©=2sin£¨2¦Øx+£©ÔÚÇø¼ä£¨¡à
£¬½â¿ÉµÃ£¬0£¼¦Ø¡Ü£®
¡¾½âÎö¡¿
ÓÉÏòÁ¿ÊýÁ¿»ýµÄ×ø±ê±íʾ£¬½áºÏÁ½½ÇºÍµÄÕýÏÒ¹«Ê½¿ÉÇóf£¨x£©=2sin£¨2x+£©. £¨1£©ÓÉx¡Ê[0£¬]£¬½áºÏÕýÏÒº¯ÊýµÄÐÔÖÊ¿ÉÇóº¯Êýf£¨x£©ÔÚÇø¼ä[0£¬]ÉϵÄ×î´óÖµ¼°×îСֵ£»
£¨2£©Èôf£¨x0£©=£¬¿ÉÇó2sin£¨2x0+£©£¬½áºÏͬ½Çƽ·½¹ØÏµ¿ÉÇócos£¨2x0+£©£¬È»ºóÓÉcos2x0=cos[£¨2x0+£©-]£¬ÀûÓÃÁ½½Ç²îµÄÓàÏÒ¹«Ê½¼´¿ÉÇó½â£»
£¨3£©ÓÉy=f£¨¦Øx£©=2sin£¨2¦Øx+£©£¬½áºÏÕýÏÒº¯ÊýµÄµ¥µ÷ÐÔ¿ÉÇóµ¥µ÷µÝÔöÇø¼ä£¬È»
µÚ15Ò³£¬¹²17Ò³
ºóÓëÇø¼ä£¨£©½øÐбȽϿÉÇó£®
±¾ÌâÖ÷Òª¿¼²éÁËÏòÁ¿µÄÊýÁ¿»ýµÄÔËËãÐÔÖʼ°Á½½ÇºÍµÄÓàÏÒ¹«Ê½£¬ÕýÏÒº¯ÊýµÄÐÔÖʵÄÁé»îÓ¦ÓÃÊÇÇó½â±¾ÌâµÄ¹Ø¼ü£®
22.¡¾´ð°¸¡¿½â£º£¨1£©º¯Êýg£¨x£©=ax2-2ax+b+1=a£¨x-1£©2+1+b-a£¬
ÒòΪa£¾0£¬ËùÒÔg£¨x£©ÔÚÇø¼ä[-1£¬1]ÉÏÊǼõº¯Êý£¬ ¹Êg£¨-1£©=3a+b+1=4£¬g£¨1£©=1+b-a=0£¬ ½âµÃa=1£¬b=0£»
22
£¨2£©ÓÉf£¨x£©-k?x¡Ý0¼´Îªx-2x+1-kx¡Ý0£¬
2
¼´Îªk¡Ü£¨-1£©ÔÚx£¾0ºã³ÉÁ¢£¬
2
ÓÉ£¨-1£©¡Ý0£¬µ±ÇÒ½öµ±x=1ʱȡµÃ×îСֵ0£¬
ËùÒÔkµÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬0]£»
x
£¨3£©·½³Ìf£¨|2-1|£©+k?
-3k=0¿É»¯Îª£º
|2x-1|2-£¨2+3k£©|2x-1|+£¨1+2k£©=0£¬|2x-1|¡Ù0£¬
x
Áî|2-1|=t£¬Ôò·½³Ì»¯Îª
t2-£¨2+3k£©t+£¨1+2k£©=0£¨t¡Ù0£©£¬ ¡ß·½³Ìf£¨|2-1|£©+k??
x
2
k
-3k=0ÓÐÈý¸ö²»Í¬µÄʵÊý½â£¬
¡àÓÉt=|2-1|µÄͼÏóÖª£¬t-£¨2+3k£©t+£¨1+2k£©=0£¨t¡Ù0£©£¬ ÓÐÁ½¸ö¸ùt1¡¢t2£¬
ÇÒ0£¼t1£¼1£¼t2»ò0£¼t1£¼1£¬t2=1£®
2
¼Çh£¨t£©=t-£¨2+3k£©t+£¨1+2k£©£¬
Ôò£¬»ò£¬
¡àk£¾0£® ¡¾½âÎö¡¿
2
£¨1£©Óɺ¯Êýg£¨x£©=a£¨x-1£©+1+b-a£¬a£¾0£¬ËùÒÔg£¨x£©ÔÚÇø¼ä[-1£¬1]ÉÏÊǼõº¯Êý£¬
¹Êg£¨-1£©=4£¬g£¨1£©=0£¬Óɴ˽âµÃa¡¢bµÄÖµ£» £¨2£©²»µÈʽ¿É»¯Îªk¡Ü£¨
-1£©2ÔÚx£¾0ºã³ÉÁ¢£¬ÓÉÆ½·½Êý·Ç¸º¿ÉµÃ²»µÈʽÓұߵÄ
×îСֵ£¬´Ó¶øÇóµÃkµÄȡֵ·¶Î§£»
x
£¨3£©·½³Ìf£¨|2-1|£©+k?
-3k=0?|2x-1|2-£¨2+3k£©|2x-1|+£¨1+2k£©=0£¬£¨|2x-1|¡Ù0£©£¬
x22
Áî|2-1|=t£¬Ôòt-£¨2+3k£©t+£¨1+2k£©=0£¨t¡Ù0£©£¬¹¹Ô캯Êýh£¨t£©=t-£¨2+3k£©t+£¨1+2k£©£¬
ͨ¹ýÊýÐνáºÏÓëµÈ¼Ûת»¯µÄ˼Ïë¼´¿ÉÇóµÃkµÄ·¶Î§£®
µÚ16Ò³£¬¹²17Ò³
Ïà¹ØÍÆ¼ö£º