a5a3因此,f(x)的极大值为f(?a)?1?a,f(x)的极小值为f()?1?.
3273② 当a?0时,b?0,此时f(x)?x3?1不存在三个相异零点;
a5a3当a?0时,与①同理可得f(x)的极小值为f(?a)?1?a,f(x)的极大值为f()?1?.
3273要使f(x)有三个不同零点,则必须有(1?a3)(1?即a3??1或a3?53a)?0, 2727. 5不妨设f(x)的三个零点为x1,x2,x3,且x1?x2?x3,
则f(x1)?f(x2)?f(x3)?0,
3f(x1)?x1?ax12?a2x1?1?0, ① 32f(x2)?x2?ax2?a2x2?1?0, ② 32f(x3)?x3?ax3?a2x3?1?0, ③
2②-①得(x2?x1)(x2?x1x2?x12)?a(x2?x1)(x2?x1)?a2(x2?x1)?0, 2因为x2?x1?0,所以x2?x1x2?x12?a(x2?x1)?a2?0, ④ 22同理x3?x3x2?x2?a(x3?x2)?a2?0, ⑤
⑤-④得x2(x3?x1)?(x3?x1)(x3?x1)?a(x3?x1)?0, 因为x3?x1?0,所以x2?x3?x1?a?0, 又x1?x3?2x2,所以x2??a. 32327a??1, 所以f(?)?0,即a2???a2,即a3??9a113因此,存在这样实数a??33满足条件. 11(2)设A(m,f(m)),B(n,f(n)),则k1?3m2?2am?b,k2?3n2?2an?b,
f(m)?f(n)(m3?n3)?a(m2?n2)?b(m?n)又k1???m2?mn?n2?a(m?n)?b,
m?nm?n由此可得3m2?2am?b?m2?mn?n2?a(m?n)?b,化简得n??a?2m, 因此,k2?3(?a?2m)2?2a(?a?2m)?b?12m2?8am?a2?b, 所以,12m2?8am?b?a2?4(3m2?2am?b), 所以a2?3b.
20. 解:(1)设数列{Sn}的公差为d?,由6Sn?9bn?an?2, ①
6Sn?1?9bn?1?an?1?2(n≥2), ②
①-②得6(Sn?Sn?1)?9(bn?bn?1)?(an?an?1), ③ 即6d??9(bn?bn?1)?d,所以bn?bn?1?6d??d为常数, 9所以{bn}为等差数列.
(2)由③得6bn?9bn?9bn?1?d,即3bn?9bn?1?d,
d11dd13bn?1??3(bn?1?)??1?132?232??3?3所以是与n无关的常数,
1111bn?1?bn?1?bn?1?bn?1?2222bn?所以①当
d1?1?0或bn?1?为常数. 32d?1?0时,d?3,符合题意; 31为常数时, 2在6Sn?9bn?an?2中令n?1,则6a1?9b1?a1?2,又a1?1,解得b1?1,…8分
②当bn?1?所以bn?1?113?b1??, 222dd?1?133?3??1,解得d??6. 此时3?13bn?1?22综上,d?3或d??6. (3)当d?3时,an?3n?2, 由(2)得数列{bn?}是以
123131为首项,公比为3的等比数列,所以bn???3n?1=?3n,即22221bn=(3n?1).
2当n≥2时,cn?bn?bn?1?当n?1时,也满足上式, 所以cn?3n?1(n≥1).
设an?ci?cj(1≤i?j),则3n?2?3i?1?3j?1,即3n?3i?1(3j?i?1)?2, 如果i≥2,因为3n为3的倍数,3i?1(3j?i?1)为3的倍数, 所以2也为3的倍数,矛盾.
所以i?1,则3n?3?3j?1,即n?1?3j?2(j?2,3,4,L).
所以数列{an}中存在无穷多项可表示为数列{cn}中的两项之和.
1n1(3?1)?(3n?1?1)?3n?1, 222017-2018学年度苏锡常镇四市高三教学情况调研(二)
附加题参考答案
21.A 解 连接OE,因为ED是⊙O切线,所以OE⊥ED. 因为OA=OE,所以∠1=∠OEA. 又因为∠1=∠2,所以2=∠OEA, 所以OE∥AC,∴AC⊥DE.
21.B 解 由
l-2=0,得(l-2)(l-x)-4=0的一个解为3,代入得x=-1,
-4l-x -1因为M???2?41??1,所以M?1???1?6???2??31?6??. 1??3??2221.C解 消去参数t,得到圆的普通方程为(x-3)+(y+2)=4, 由2?cos(???4)?a,得?cos???sin??a?0,
所以直线的直角坐标方程为x+y-a=0. 依题意,圆心C到直线的距离等于2,即|3-2-a|解得a=-1或3. =2,221.D 证明:因为a+2b+c=1,a2+b2+c2=1, 所以a+2b=1-c,a2+b2=1-c2. 由柯西不等式:(12+22)(a2+b2)≥(a+2b)2, 5(1-c2)≥(1-c)2,
2
整理得,3c2-c-2≤0,解得-≤c≤1.
3
2
所以-≤c≤1.
3
11?(1?)(1?m)(1?n)?,??3322. 解(1)由题意,得?
11?mn?.?36?311又m?n,解得m?,n?.
341232132214(2)由题意,a??????????.
33433433491417b?1?P(X?0)?P(X?1)?P(X?3)?1????.
393636147111E(X)?0??1??2??3??.
3936361223. 解(1)当n?2时,
14325f(x)?(x?5)5?C50x5?C5x5?C52x3(5)2?C5x(5)3?C54x(5)4?C5(5)5, 135所以f(2)?f(?2)?(2?5)5+(?2?5)5?2[C5(5)124?C5(5)322+C5(5)520]
=2(5?165+10?4?55+255)=6105,
所以A?610.
02n?112n22n?12n?12n?1(2)因为f(x)?(x?5)2n?1?C2, ?C25?C2(5)2?L?C2n?1xn?1xn?1xn?1(5)02n?112n22n?12n?12n?1所以f(2)?C2, ?C25?C2(5)2?L?C2n?12n?12n?12n?1(5)由题意f(2)?(5?2)2n?1?m?? (m?N*,0???1), 首先证明对于固定的n?N*,满足条件的m,?是唯一的.
假设f(2)?(2?5)2n?1?m1??1?m2??2(m1,m2?N*,0??1,?2?1,m1?m2,?1??2), 则m1?m2??2??1?0,而m1?m2?Z,?2??1?(?1,0)U(0,1),矛盾. 所以满足条件的m,?是唯一的. 下面我们求m及?的值:
因为f(2)?f(?2)?(2?5)2n?1?(?2?5)2n?1?(2?5)2n?1?(2?5)2n?1
02n?122n?142n?3112n?2[C2?C2(5)2?C2(5)4+L+C2n?12n?12n?12n?12(5)],
显然f(2)?f(?2)?N*.
又因为5?2?(0,1),故(5?2)2n?1?(0,1), 即f(?2)?(?2?5)2n?1?(5?2)2n?1?(0,1).
02n?122n?142n?3112n所以令m?2[C2?C2(5)2?C2(5)4+L+C2n?12n?12n?12n?12(5)],
??(?2?5)2n?1,则m?f(2)?f(?2),??f(?2),又m???f(2),
所以?(m??)?f(?2)?f(2)?(2?5)2n?1?(?2?5)2n?1?(5?4)2n?1?1.
相关推荐: