19.(5分)如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,分别以直角边AC和斜边AB向外作等边△ACD、等边△ABE,过点E,作EF⊥AB,垂足为F,连结DF.求证:AE=DF.
20.(7分)某中学教学楼的后面靠近一座山坡,坡面下是一块草地,如图所示,BC∥AD,斜坡AB=160米,坡度i=
:1,为防止山体滑坡,保障学生安全,学
校决定不仅加固教学楼,还对山坡进行改造,当坡角不超过45°时可保证山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC进到E处,问BE至少是多少米?(结果保留根号)
21.(7分)如图,某公司组织员工假期去旅游,租用了一辆耗油量为每百公里约为25L的大巴车,大巴车出发前油箱有油100L,大巴车的平均速度为80km/h,行驶若干小时后,由于害怕油箱中的油不够,在途中加了一次油,油箱中剩余油量y(L)与行驶时间x(h)之间的关系如图所示,请根据图象回答下列问题:
5 / 38
(1)汽车行驶 h后加油,中途加油 L;
(2)求加油前油箱剩余油量y与行驶时间x的函数解析式;
(3)若当油箱中剩余油量为10L时,油量表报警,提示需要加油,大巴车不再继续行驶,则该车最远能跑多远?此时,大巴车从出发到现在已经跑了多长时间?
22.(7分)如图是一个被平均分成6等份的转盘,每一个扇形中都标有相应的数字,甲乙两人分别转动转盘,设甲转动转盘后指针所指区域内的数字为x,乙转动转盘后指针所指区域内的数字为y(当指针在边界上时,重转一次,直到指向一个区域为止).
(1)直接写出甲转动转盘后所指区域内的数字为负数的概率; (2)用树状图或列表法,求出点(x,y)落在第二象限内的概率.
23.(8分)如图,在△ABC中,以AC为直径的⊙O交BC于D,过C作⊙O的切线,交AB的延长线于P,∠PCB=∠BAC. (1)求证:AB=AC;
6 / 38
(2)若sin∠BAC=,求tan∠PCB的值.
24.(10分)如图,在平面直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴交于A、B两点,A点在原点的左侧,B点在原点右侧,与y轴交于C点,点P是x轴下方的抛物线上的一动点. (1)求A、B、C三点坐标;
(2)当点P运动到什么位置时,CP∥AB,且AC=BP,直接写出此时P点的坐标:P( , )
(3)连接PO、PC,并把抛物线沿CO翻折,此时,可得到四边形POP'C,那么,是否存在点P,使四边形POP'C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
25.(12分)阅读理解
如图1,在△ABC中,当DE∥BC时可以得到三组成比例线段:①
7 / 38
②
③;反之,当对应线段成比例时也可以推出DE∥BC.
理解运用
三角形的内接四边形是指顶点在三角形各边上的四边形.
(1)如图2,已知矩形DEFG是△ABC的一个内接矩形,将矩形DEFG延CB方向向左平移得矩形PBQH,其中顶点D、E、F、G的对应点分别为F、B、Q、H,在图2中画出平移后的图形;
(2)在(1)所得图形中,连接CH并延长交BP的延长线于点R,连接AR,求证:AR∥BC; 综合实践
(3)如图3,某个区有一块三角形空地,已知△ABC空地的边AB=400米、BC=600米,∠ABC=45°;准备在△ABC内建设一个内接矩形广场DEFG(点E、F在边BC上,点D、G分别在边AB和AC上),三角形其余部分进行植被绿化,按要求欲使矩形DEFG的对角线EG最短,请在备用图中画出使对角线EG最短的矩形?并求出对角线EG最短距离(不要求证明)
中考数学模拟测试卷(解析版)
一、选择题(共10小题,每小题3分,计30分) 1.﹣的倒数等于( ) A. B.﹣ C.﹣2 D.2 【考点】倒数.
8 / 38
相关推荐: