【解析】
3Q?an?是等比数列 ?a2?a6?a10?a6?33 ?a6?3
Q?bn?是等差数列 ?b1?b6?b11?3b6?7? ?b6?7? 314?b?b2b63??tan7???tan???3 ?tan210?tan?tan21?a3?a91?a61?333本题正确选项:D 7.已知数列{an}满足a1?2n?1111a2?a3?L?an?n2?n(n?N*),设数列?bn?满足:bn?,数列
anan?123n?bn?的前n项和为TA.[,??) 【答案】D 【解析】
n,若Tn?n?(n?N*)恒成立,则实数?的取值范围为( ) n?1C.[,??)
14B.(,??)
1438D.(,??)
38111a2?a3?L?an?n2?n,① 23n111an?1?(n?1)2?(n?1),② 当n?2时,a1?a2?a3???23n?11①﹣②得:an?2n,
n解:数列{an}满足a1?2故:an?2n,
数列?bn?满足:bn?2n?12n?11?11??2??22?, anan?14n(n?1)24?n(n?1)??2221??1??1??1?11?则:Tn??1??????????L?2?2?
4?223n(n?1)?????????1?1???1??, 4?(n?1)2?由于Tn?故:
n?(n?N*)恒成立, n?11?1?n1???, ??4?(n?1)2?n?1n?2,
4n?4n?211?(1?)在n?N*上单调递减, 因为y?4n?44n?1整理得:??3?2n?1??故当n?1时,? ??4n?4?max8所以??3. 8故选:D.
8.已知函数y?f?x?的定义域为R,当x?0时f?x??1,且对任意的实数x,y?R,等式
?1??f?x?f?y??f?x?y?成立,若数列?an?满足f?an?1?f???1?n?N?,且a1?f?0?,则下列结
?1?an?论成立的是( ) A.f?a2016??f?a2018? C.f?a2018??f?a2019? 【答案】A 【解析】
由f?x?f?y??f?x?y?,令x?0,y??1,则f?0?f??1??f??1?
B.f?a2017??f?a2020? D.f?a2016??f?a2019?
Qx?0时,f?x??1 ?f??1??1 ?f?0??1 ?a1?1
当x?0时,令y??x,则f?x?f??x??f?0??1,即f?x??又f??x??1 当x?0时,0?f?x??1 令x2?x1,则x2?x1>0
1
f??x?f?x2??f?x2?x1???0,1? ?f?x1?f?x2?x1??f?x2?,即
f?x1??f?x?在R上单调递减
又f?an?1?f??1??1??fa???n?1??1?f?0?
1?an??1?an???an?1??1 1?an令n?1,a2??1;令n?2,a3??2;令n?3,a4?1 2数列?an?是以3为周期的周期数列
1?a2016?a3??2,a2017?a1?1,a2018?a2??,a2019?a3??2,a2020?a1?1
2Qf?x?在R上单调递减 ?f??2??f????f?1?
?2??f?a2016??f?a2018?,f?a2017??f?a2020?,f?a2018??f?a2019?,f?a2016??f?a2019?
本题正确选项:A 9.在数列?an?中,a1?【答案】1 【解析】 因为an?1?an??1?11,an?1?an?,(n?N*),则a2019的值为______. 2019n(n?1)1,(n?N*)
n(n?1)111??,
n(n?1)nn?1所以an?1?an?1a2?a1?1?,
211a3?a2??,
23,
a2019?a2018?11, ?20182019各式相加,可得
a2019?a1?1?1, 201911a2019??1?,
20192019所以,a2019?1,故答案为1.
10.已知正项等比数列{an}满足2a5?a4?a3,若存在两项am,an,使得8aman?a1,则小值为__________. 【答案】2 【解析】
91?的最mnQ正项等比数列{an}满足2a5?a4?a3,
?2a1q4+a1q3=a1q2,
整理,得2q2+q?1?0,又q?0,解得,q?1, 2Q存在两项am,an使得8amgan?a1,
?64a12qm?n?2?a12, 整理,得m?n?8,
911911m9n??(m?n)(?)?(10??) mn8mn8nm1m9n…(10?2g)?2, 8nm则
91?的最小值为2. mnm9n?取等号,但此时m,n?N*.又m?n?8, nm当且仅当
所以只有当m?6,n?2时,取得最小值是2. 故答案为:2
11.已知数列?an?满足对?m,a7?n?N*,都有am?an?am?n成立,
?22,函数f?x??sin2x?4cosx,2记yn?f?an?,则数列?yn?的前13项和为______. 【答案】26 【解析】 解:对?m,n?N*,都有am?an?am?n成立,
可令m?1即有an?1?an?a1,为常数,
相关推荐: