性衣料,可快速释放作为速释部分。另外,也可在骨架片表面再行包衣,使药物释放更合理。
2.影响释药的因素 影响释药的因素主要是片芯和包衣液的性质。片芯的性质如药物的性质、片芯所用的辅料和片芯的硬度等,若药物和辅料疏水性强、片芯硬度大,则药物的释放速率会减慢,颗粒越大,则比表面积越小,药物的释放即越慢;包衣液的性质如包衣液的组成、包衣层的厚度等,包衣液的疏水性越强或包衣层越厚(即包衣液用量大),则药物释放慢。因此,因综合考虑影响释药的因素。
3.包衣膜处方设计 膜控型缓控释制剂主要是通过包衣膜来控制和调节药物释放速率,包衣材料一般不能单独包衣形成包衣膜,必须进行处方配制成包衣液,采用一定的工艺形成具有一定渗透性和机械性的衣膜。包衣液的组成通常包括成膜材料、溶剂、增塑剂、致孔剂、着色剂/遮盖剂、抗黏剂等。
(1)成膜材料 常用的成膜材料有胃溶型、肠溶型和不溶型(见第一节),各种成膜材料成分理化性质相差很大,在选择时首先要考虑包衣材料在胃肠道的释放部位,以及聚合物在包衣溶剂及胃肠生理环境的溶解度,水汽通透性、黏性及机械性能等。
(2)包衣溶剂 常用的溶剂有水、醇类、酮类、酯类和氯化烃类。由于各种溶剂的蒸发潜热不同,包衣操作时,有不同的蒸发速率,而且成膜材料的溶胀及链的松弛程度均受到溶剂的影响,会直接影响膜的质量,故而溶剂系统在很大程度上决定了最终形成衣膜的性质和特点。选择溶剂的首要条件是其必须与成膜材料相互作用良好,即成膜材料在溶剂中能最好和最大范围地溶解。一般认为成膜材料最适宜的溶剂应能使聚合物在溶液中获得最大的伸展,形成的膜具有最大的粘结或内聚强度,从而使膜具有最佳的机械强度。
一般成膜材料难溶于水,故常用有机溶剂进行薄膜包衣,其优点是系统操作周期短,对热不稳定的药物应用价值较高。但由于有机溶剂存在着明显的缺点,例如易燃、易爆、污染空气,毒性较大以及残留量等问题限制了其进一步的发展。因此,以水为分散介质的包衣液目前已成为缓、控释包衣制剂的主要材料,如Surelease?、Aquacoat ?和欧巴代Ⅱ等,它的最大优点是彻底革除有机溶剂、固体含量高、粘度低、易操作、成膜快等。但水性包衣也存在一定的缺陷:易受微生物污染,操作时间的延长给湿热敏感的药物带来不利;易溶性药物在包衣过程中可能会迁移到膜中而使稳定性受到影响等;容易使敏感性药物活性减弱,如胰腺酶的肠溶小丸,在使用水性包衣技术时这种酶会失去13%到23%的活性,而使用有机溶剂包衣平均失活才5%。
(3)增塑剂 增塑剂与聚合物有良好的柔和性,相互反应后可降低高分子聚合物中邻近分子之间链交缠程度,降低弹性系数,从而改善聚合物的机械强度,提高包衣膜的性能。常用的增塑剂可分为水溶性和脂溶性增塑剂两大类。水溶性增塑剂常用的有丙二醇、甘油、聚乙二醇(PEG)等;脂溶性增塑剂常用的有三醋酸甘油酯(TA)、蓖麻油、邻苯二甲酸二乙酯(DEP)、葵二酸二丁酯(DBS)、柠檬酸三丁酯(TBC)、柠檬酸三乙酯(TEC)、硅油和司盘等。DEP、DBS、TBC、TEC、TA等均可作为EC水性包衣液的增塑剂,水溶性增塑剂虽溶于水,但与EC的相溶性较差,不能进入EC内部而起到增塑作用,一般不被选用。同一种成膜材料,所用的增塑剂种类和用量不同,会得到不同性质的包衣膜。水分散包衣液,如果增塑剂用量太少,不能克服胶乳粒子变形的阻力,结果会形成不完整或不连续的衣膜;而增塑剂用量过大,由于聚合物薄膜太软,而引起包衣制剂的聚集、粘连和流动性差,包衣时难以操作,也不能获得完整的衣膜。增塑剂在包衣溶液处方中的浓度由许多因素决定,包括聚合物的性质、使用方法以及处方中所用的其它附加剂的性质。一般增塑剂的常用浓度相当于聚合物重量的15%~30%。对特定的包衣溶液或分散体中的最适用量,则必须经过细致的实验才能确定。
(4)致孔剂 无渗透性或低渗透性成膜材料(如醋酸纤维素或乙基纤维素等)单独制成的包衣膜,往往对水分或药物的通透性很低,难以满足释药的要求,故常在这些材料的包衣液中加入水溶性的物质,来增加包衣膜的通透性,以使制成的制剂获得所需的释药速率。常用的致孔剂为:PEG类、PVP、蔗糖、盐类以及其他水溶性成膜材料如HPMC、HPC等。有时,也将部分药物加在包衣液中作致孔剂,同时这部分药物又起速释作用。当含致孔剂的缓释包衣制剂与水或消化液接触时,衣膜上的致孔剂逐渐溶解,将使膜形成微孔或海绵状结构,从而增加了介质和药物的通透性。
(5)其他 包衣液处方中除以上一些成分外,有时还需加入抗粘剂、着色剂、消泡剂、稳定剂等。如EC水胶乳包衣液中加表面活性剂十二烷基硫酸钠为稳定剂,二甲基硅油为消泡剂。在以有机溶剂制成的包衣液处方中加入少量(一般为包衣液体积的1%~3%)滑石粉、硬脂酸镁、二氧化硅、二氧化钛等抗粘剂,可以有效地防止包衣过程中易于出现
的粘连结块等问题,从而可以降低包衣工艺操作难度,缩短操作时间。
3.膜控型缓、控释制剂的制备方法
(1)包衣片剂的制备 将药物利用常规的方法制成片芯,然后将包衣材料溶液用高效喷雾器(连续性或间隙性方式)喷雾包于片芯上,在片芯表面包上适当厚度的衣膜。包衣材料用量通常用衣膜增重来代替衣膜厚度进行控制。目前一般用改进的包衣锅如高效包衣锅、加档板包衣锅及埋管式喷雾包衣锅进行包衣。高效包衣锅是在锅壁上开数千个小孔,孔径约1.5mm,热空气通过小孔吹人锅内,可大大提高包衣效率。高效包衣锅仅适用于片剂包衣,埋管式喷雾包衣是在普通包衣锅的底部装有通入包衣溶液、压缩空气和热空气的埋管,仅适用于以水为分散介质的混悬型包衣液,由于喷雾包衣连续操作,可缩短包衣时间,能用于小粒子的包衣。
(2)包衣颗粒与包衣小丸的制备 流化床包衣法是缓释颗粒和小丸包衣常用的方法。是借助急速上升的空气流使片剂、小丸剂或颗粒等在包衣室内处于悬浮流化状态,同时将包衣液以雾状喷入,使之包裹在制剂表面,并被不断通入的热空气所干燥,反复包衣直至所需厚度。其特点是操作连续,进料和出料无须停止操作;操作时流床湿度易于控制并能很快达到等温条件。目前常用于缓释包衣的流床类型有:顶喷造粒和包衣两用的流化床;底喷包衣流化床及旋转式流化床等。旋转式流化床以其独特的空气流型结合离心力使之既适用于造粒又可包衣,能均匀地混合物料,制成粒度重现性好的球形颗粒。
(3)压制包衣法 压制包衣法是将聚合物包衣材料粉末加入适量辅料,制成颗粒后直接经包衣压片机压包在片芯表面,但此法需要特殊的由两台旋转式压片机组成的包衣压片机。
(4)热熔包衣法 本法是采用熔点较低的聚合物材料,将其加热后成液态或粘流态,喷洒与丸心或颗粒表面,再使之冷却成膜。目前,该法尚处于研究阶段,所报道的应用实例尚少。
(二)骨架缓、控释给药体系
骨架型缓控释给药体系即骨架型缓控释制剂,系指药物根据溶出、扩散、离子交换等原理,与一种或多种骨架材料通过压制或融合技术制成片状、小丸、小粒或其他形式的固体制剂称为骨架型制剂,骨架呈多孔型或无孔型。利用骨架技术制备的骨架片,常用的有溶蚀性骨架片、亲水性凝胶骨架片和不溶性骨架片。
1.亲水性凝胶骨架片
(1)释药机理 亲水凝胶骨架片释药机制即溶蚀与扩散、溶出结合,即药物扩散和凝胶骨架溶蚀的综合效应。即将药物包埋于亲水性纤维素类高分子材料骨架中制成的骨架片称为亲水性凝胶骨架片,药物的释放与药物性质有关。亲水凝胶遇水后形成凝胶层,水溶性药物的释放速度取决于药物通过凝胶层的扩散速度,而水中溶解度小的药物,释放速度由凝胶层的逐步溶蚀速度所决定,不管哪种释放机制,凝胶最后完全溶解,药物全部释放。
(2)影响释药的因素 影响亲水凝胶骨架片中药物释放速率的因素很多,归纳起来可总结为以下几点:①药物的性质及在处方中的含量;②骨架材料的理化性质、用量、黏度及粒径;③附加剂的种类与用量;④制备工艺的影响,如制备方法、压力、片剂的形状及大小等。药物的水溶性不同,释药机制也不同。对水溶性药物主要以药物的扩散和凝胶层的不断溶蚀为主,对难溶性药物则以骨架溶蚀为主。
(3)制备方法 亲水性凝胶骨架片的制备工艺与普通片差异不大,一般采用湿颗粒压片法、干颗粒压片法和粉末直接压片法等,生产工艺简单,一般片剂生产的设备即可满足要求。通过调节骨架的组成等可改变凝胶层的特性,较方便地获得具有理想释药特性的处方,片剂发生崩解的可能性极小,服用安全。另外,该骨架片是一均匀系统,不会因处方组成或生产工艺的微小改变而对药物的释放性能产生重大影响。
—个成功的亲水性骨架片处方选用的高分子材料必须能快速水合形成凝胶层,以使片剂服用后不会迅速崩解,增加处方中高分子材料的比例可增加形成凝胶的黏度,导致药物的扩散速度减慢而使药物释放减慢。以HPMC为骨架材料制备的骨架片,当处方中含20%HPMC可达到满意的药物释放速度,但必须考虑片剂中其他填充剂、黏合剂和崩解剂的影响。以HPMC为亲水性基质延缓药物缓释的例子很多,如对乙酰氨基酚格列吡嗪、硫酸奎尼丁、双氯酚酸钠缓释片等。
2.溶蚀性骨架片
(1)释药机理 将药物包埋于溶蚀性骨架材料中制成的骨架片,其释药机制是通过孔道扩散与骨架的溶蚀控制药
物释放,可加入亲水性表面活性剂或水溶性材料调节释药速度。如生物溶蚀性骨架片,处方组成为硬脂醇、巴西棕榈蜡和PVP,将PVP作为致孔剂加入到硬脂醇与巴西棕榈蜡熔融状态的混合物中,再加入药物混合均匀,凝固后制粒压片。结果表明在8h内,含5%致孔剂的骨架缓释片比不加致孔剂的对照缓释片体外释放百分率增加37%,加20%致孔剂时释放百分率增加55%。致孔剂的添加量在10%~20%时,释药速率最佳。
(2)影响释药的因素 溶蚀性骨架片的释药速率与骨架材料的性质、用量、药物的性质及在处方中的含量、药物颗粒大小、致孔剂的性质与用量、片剂大小、工艺过程等因素有关,pH、消化酶对脂肪酸的水解影响很大,如棕榈酸甘油酯(单、双、三元酯)对磺胺的缓释作用,其缓释效果是按单酯、双酯、三酯的顺序依次递增的。
(3)制备方法 将药物包埋于缓慢溶蚀骨架中制备溶蚀性骨架片的方法有三种:溶剂蒸发法即将药物与辅料的溶液或分散体蒸发除去溶剂,干燥、制粒、压片;熔融法即将药物与辅料直接加入熔状态的蜡质骨架材料中(温度控制在略高于蜡质熔点),然后将混合物冷凝、固化、粉碎成一定粒度、压片;热混合法即将药物与十六醇在玻璃化温度(60℃)混合,团块用玉米脘醇溶液制粒后压片。
3.不溶性骨架片
(1)释药机理 以不溶于水或水溶性极小的高分子聚合物或无毒塑料为材料制成的片剂,其药物释放主要分为三步:①消化液渗入骨架孔内;②药物溶解;③药物自骨架孔道释出。在药物释出和制剂通过胃肠道后,压制片仍能保持原来形状,释药后的惰性骨架随粪便排出。不溶性骨架片常用的骨架材料有EC、聚甲基丙烯酸酯、无毒聚氯乙烯、聚乙烯、乙烯-醋酸乙烯共聚物、硅橡胶等不溶于水或水溶性极小的高分子聚合物或无毒塑料。由于脂溶性药物自骨架内释出速度过缓,因而只有水溶性药物适于制备此种骨架片,释药机制可用Higuchi方程描述。
(2)影响释药的因素 释药速度可通过药物在骨架中的起始浓度,药物的溶解度,骨架的空隙率、曲率,制备骨架时的溶剂系数以及骨架材料等参数来控制。而难溶性药物自骨架中释放速率很慢,不考虑制成此种骨架缓释制剂。此外,该类片剂有时释放不完全,大量药物包含在骨架中,因此,大剂量的药物也不宜制成这类缓释制剂。
(3)制备方法 不溶性骨架片的制备方法很多,通常采用将药物与不溶性骨架材料混合后制颗粒,再压片。制颗粒的方法有:①用有机溶剂如乙醇、丙酮和二氯甲烷等为润湿剂制粒;②用溶于有机溶剂的骨架材料溶液如EC的乙醇溶液作黏合剂制粒;③在骨架材料的有机溶液中添加其他聚合物如PVP为黏合剂制粒;④将药物溶于有机溶媒为润湿剂制粒;⑤将药物溶于含骨架材料的溶液中,将溶媒蒸发后即得药物在骨架材料中的固体分散体,粉碎制粒后压片;⑥在药物颗粒中加入一定量骨架材料的粉粒,混合后直接压片。为了调节释药速率,可在处方中加入电解质(最大用量可大片重的30%)、糖类和亲水凝胶(最大用量可大片重的10%)等。
(三)渗透泵控释给药体系
渗透泵型控释给药体系是用渗透压原理制成的一类制剂。口服渗透泵片以其独特的释药方式和稳定的释药速率引起人们的普遍关注,是目前应用最为广泛的渗透泵制剂。
1.渗透泵控释给药体系的分类
(1)单室渗透泵 又称初级渗透泵,一般用于易溶性药物。片芯是由药物和具有高渗透性物质组成,包衣膜多是由醋酸纤维素或乙基纤维素等高分子材料形成的刚性半透膜,半透膜上通常用激光或其他机械力打一小孔作为药物的输出通道。口服后胃肠道的水分通过半透膜进人片芯,形成药物的饱和溶液或混悬液,加之高渗透辅料溶解,膜内外存在较大的渗透压差,从而将药液以恒定速率挤出释药孔。
(2)多室渗透泵 多用于难溶性药物。一般至少由药室和动力室两室组成。药室是由药物和可溶性辅料或药物的混悬液组成,动力室是由一些可溶胀的高分子材料组成。使用时,水分由半透膜进入到动力室,使得高分子材料吸水膨胀,从而挤压药室使药物由释药小孔释放。如德国拜耳公司开发的硝苯地平控释片即为双室型渗透泵片。
(3)三层渗透泵 三层渗透泵片是由中间推进层和两边两层药室组成,三层外边包了一层半透膜,每个药室各有一释药孔。当水分进入到推进层后,推进层膨胀,使药物从两个药室释放出来。此系统的优点是避免了某些药物从一个小孔释放时产生的胃肠道黏膜副作用。
(4)微孔型渗透泵 激光打孔有可能使膜灼烧或使孔径大小不一,当释药孔道较少时,释药孔道易在胃肠道被堵塞而导致无规则释药。近年有人在成膜材料中加人致孔剂水溶性物质改善膜的通透性,制成微孔型渗透泵。改变致孔
剂的用量可调节膜上微孔,从而控制释药速度。
渗透泵制剂也有其不足之处,如制备工艺复杂、不易工业化生产。因此设计简单且易于工业化生产的渗透泵制剂是渗透泵制剂的发展方向,激光打孔技术的发展也必将推动渗透泵制剂的发展;此外 ,一些基于渗透原理的制剂如微丸系统也是渗透泵制剂的重要发展方向之一。
2.渗透泵控释给药体系处方设计
(1)药物的选择 渗透泵制剂适用于治疗窗窄、生物半衰期短或刺激性大的药物,对水中不稳定的药物不适用,渗透泵对药物的水溶性有一定的要求,包封于渗透泵中的药物溶解度应在0.05~0.3g/ml范围内,以保持适当的恒速释药和零级释药分数。溶解度大于0.3g/ml者,需要加一些辅料使其溶解度降低。如地尔硫卓37℃的溶解度为0.59g/m1,在己二酸、柠檬酸等的存在下,将适量NaCl与地尔硫卓一起制成片核,再包封于含致孔剂山梨醇的醋酸纤维素半透膜内,制成的渗透泵片遇水时,地尔硫卓被1mol/L的NaCl溶液包围,且能保持16h。当地尔硫卓的溶解度降低为0.155g/m1时,零级释药分数达到4/5以上,恒速释药可达14~16h之久。溶解度太大而剂量又小的药物,即使制成渗透泵剂型,也难以恒速释药。溶解度小于0.05g/m1者,可适当加入一些增溶剂以加快释药速度。如氟哌啶醇不溶于水,与增溶剂(无水柠檬酸)、缓释剂(PVP)和膨胀剂(交联PVP)等一起制成含药10mg的渗透泵片,能以每小时0.83mg的平均速率释药12h。Alaz公司的生产技术可使每粒渗透泵制剂在24h内恒速释放2~800mg的药物,适用于溶解度范围较宽的药物。
(2)成膜材料的选择 口服渗透泵制剂常用的成膜材料为醋酸纤维素,文献报道的成膜材料尚有乙基纤维素、聚氯乙烯、聚碳酸酯、乙烯醇-乙烯基乙酸酯和乙烯-丙烯聚合物等,这些材料现在已经较少使用。醋酸纤维素的乙酰化率决定醋酸纤维素对水的渗透性。随着乙酰化率的增加,醋酸纤维素的亲水性逐渐减小:通过调整不同乙酰化率醋酸纤维素的比例,可以控制包衣膜的渗透性,从而控制药物的释放速率。采用特殊的包衣方法可以在片芯表面形成醋酸纤维素不对称膜,使透膜水流量增大,溶解度较小的药物也可以获得较大的释药速度。
由于渗透泵制剂的特殊工艺要求,制备过程中要使用大量有机溶剂来完成包衣过程。近年来,随着人们环境保护意识的增强和对高分子材料水分散体包衣技术的深入研究,利用水分散体包衣技术制备口服渗透泵制剂,改进了制备工艺,丰富了渗透泵制剂的研究内容,为研究开发新型控释制剂奠定了基础。
(3)渗透促进剂的选择 渗透促进剂是指能够产生渗透压的物质,包括促渗透剂和促渗透聚合物两部分,分别适用于单室渗透泵和多室渗透泵。促渗透剂包括硫酸镁、氯化镁、硫酸钾、硫酸钠、d-甘露醇、尿素、琥珀酸镁、酒石酸等。当药物本身的渗透压较小时,加入促渗透剂用来产生渗透压,维持药物释放;促渗透聚合物具有吸水膨胀性,当与水或液体接触时可膨胀或溶胀,膨胀后促渗透聚合物的体积可增长2~50倍,促渗透聚合物可以是交联或非交联的亲水聚合物,—般以共价键或氢键形成的轻度交联为佳。常用的有:相对分子质量0.3万~500万的聚羟基甲基丙烯酸烷基酯,相对分子质量1万~36万的PVP,阴离子水凝胶,相对分子质量为45万~400万的Carbopol羧酸聚合物,相对分子质量力8万~20万的Goodrite聚丙烯酸,相对分子分子质量为10万~500万以上的Polyox聚环氧乙烷聚合物等。
(4)释药孔径的设计 普通口服渗透泵制剂的表面有一个或多个释药孔,当置于含水的环境时、水分在渗透压差的作用下进入包衣膜内部,形成药物溶液或混悬液从释药孔中释放出来。释药孔径一方面要小得可以避免药物不受控制的释放,另一方面又要大得足以防止药片内的压力增加。因此,释药孔径的设计对于口服渗透泵的释药速率有极大的影响。
早期文献曾报道,用机械钻孔来制备渗透泵片,这种方法不适用于机械化大生产,仅限于试验研究。并且,机械钻孔导致的包衣膜破损影响渗透泵片的释药速率;目前,工业生产中常采用激光打孔的方式。该方法使用激光作为致孔的能量来源,对包衣膜的损伤小,工作效率0.1万~1万片/min。有文献报道,采用改进的冲头,在包衣前的片芯上形成凹痕,包衣后直接形成释药孔。通过改进的压片机来制备释药孔径,该方法可以将生产效率提高到4万~8万片/min。
3.口服渗透泵制剂的制备 对于单室渗透泵制剂而言,其制备工艺与普通薄膜包衣片制备工艺类似。将药物与黏合剂、填充剂、促渗透剂等混合均匀后制粒,干燥,压成片芯后包衣,用激光或其他方法在包衣膜表面形成释药孔。
多室渗透泵制剂在片芯的制备上较为复杂,首先要选择适当的基质,使药物能够均匀地分散在基质中。基质必须
相关推荐: