-------------------------天才是百分之一的灵感加百分之九十九的勤奋------------------------------
第二章 概率
1 求离散型随机变量的概率分布的方法
对离散型随机变量概率分布的考查是概率考查的主要形式,那么准确写出概率分布显得至关重要.下面就谈一下如何准确求解离散型随机变量的概率分布. 1.弄清“随机变量的取值”
弄清“随机变量的取值”是第一步.确定随机变量的取值时,要做到准确无误,特别要注意随机变量能否取0的情形.另外,还需注意随机变量是从几开始取值,每种取值对应几种情况.
例1 从4张标有1,2,3,4的卡片中任意取出两张,若ξ表示这两张卡片之和,请写出ξ的可能取值及指出此时ξ表示的意义.
分析 从标有1,2,3,4的四张卡片中取两张,ξ表示两张卡片之和,则首先弄清共有几种情况,再分别求和.
解 ξ的可能取值为3,4,5,6,7,其中ξ=3表示取出分别标有1,2的两张卡片;ξ=4表示取出分别标有1,3的两张卡片;ξ=5表示取出分别标有1,4或2,3的两张卡片;ξ=6表示取出分别标有2,4的两张卡片;ξ=7表示取出分别标有3,4的两张卡片. 2.弄清事件类型
计算概率前要确定事件的类型,同时正确运用排列与组合知识求出相应事件的概率. 例2 以下茎叶图记录了甲、乙两组各四名同学的植树棵数.
甲组 乙组 9 1 9 1 0 1 9 0 8 9
分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数Y的概率分布. 分析 由茎叶图可知两组同学的植树棵数,则可得分别从甲、乙两组同学中随机选取一名同学,两同学的植树总棵数的所有可能取值,由古典概型可求概率.
解 由茎叶图可知,甲组同学的植树棵数是9,9,11,11;乙组同学的植树棵数是9,8,9,10.分别从甲、乙两组中随机选取一名同学,共有4×4=16(种)可能的结果,这两名同学植树总棵数Y的可能取值为17,18,19,20,21.事件“Y=17”等价于“甲组选出的同学植树9棵,乙组2
选出的同学植树8棵”,所以该事件有2种可能的结果,因此P(Y=17)=
16111=.同理可得P(Y=18)=,P(Y=19)=, 844
P(Y=20)=,P(Y=21)=. 所以随机变量Y的概率分布为
1
418
金戈铁制卷
-------------------------天才是百分之一的灵感加百分之九十九的勤奋------------------------------
Y P 17 1 818 1 419 1 420 1 421 1 83.注意验证随机变量的概率之和是否为1 通过验证概率之和是否为1,可以检验所求概率是否正确,还可以检验随机变量的取值是否出现重复或遗漏.
例3 盒中装有大小相同的10个小球,编号分别为0,1,2,…,9,从中任取1个小球,规定一个随机变量X,用“X=x1”表示小球的编号小于5;“X=x2”表示小球的编号等于5;“X=
x3”表示小球的编号大于5,求X的概率分布.
解 随机变量X的可能取值为x1,x2,x3,且
P(X=x1)=,P(X=x2)=,P(X=x3)=. 故X的概率分布如下.
1
211025
X P x1 1 2x2 1 10x3 2 5点评 随机变量的概率分布是我们进一步解决随机变量有关问题的基础,因此准确写出随机n变量的概率分布是很重要的,为了保证它的准确性,我们可以利用?pi=1进行检验.
i=1
2 独立事件与互斥事件辨析
相互独立事件与互斥事件是两个完全不同的概念,但同学们在学习过程中容易混淆这两个概念,而导致错误.下面结合例题加以分析帮助同学们正确区分这两个概念. 1.把握互斥事件中的“有一个发生”
求互斥事件有一个发生的概率,即互斥事件中的每一个事件发生都会使所求事件发生,应用的是互斥事件概率加法公式P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).
例1 李老师正在写文章的时候,身边的电话突然响了起来.若电话响第1声时被接听的概率为0.1,响第2声时被接听的概率为0.15,响第3声时被接听的概率为0.5,响第4声时被接听的概率为0.22,那么在电话响前4声内被接听的概率是多少?
分析 在电话响前4声内李老师接电话的事件包括:打进的电话“响第1声时被接听”,“响第2声时被接听”,“响第3声时被接听”,“响第4声时被接听”这4个事件,而且只要有一个事件发生,其余的事件就不可能发生,从而求电话在响前4声内李老师接听的概率问题即为互斥事件有一个发生的概率问题.
解 李老师在电话响前4声内接听的概率P=0.1+0.15+0.5+0.22=0.97. 2.把握相互独立事件中的“同时发生”
金戈铁制卷
-------------------------天才是百分之一的灵感加百分之九十九的勤奋------------------------------
相互独立事件即是否发生相互之间没有影响的事件.求相互独立事件同时发生的概率,应用的是相互独立事件的概率乘法公式P(A1A2…An)=P(A1)P(A2)…P(An).
例2 甲、乙两名跳高运动员在一次2米跳高中成功的概率分别为0.7、0.6,且每次试跳成功与否相互之间没有影响.求: (1)甲试跳三次,第三次才成功的概率;
(2)甲、乙两人在第一次试跳中至少有一人成功的概率.
解 记“甲第i次试跳成功”为事件Ai,“乙第i次试跳成功”为事件Bi,i=1,2,3. 依题意得P(Ai)=0.7,P(Bi)=0.6,且Ai与Bi相互独立. (1)“甲第三次试跳才成功”为事件A所以P(A1
1
A2A3,
A2A3)=P(A1)P(A2)P(A3)=0.3×0.3×0.7=0.063.
所以甲第三次试跳才成功的概率为0.063.
(2)记“甲、乙两人在第一次试跳中至少有一人成功”为事件C.
P(C)=1-P(A1B1)=1-P(A1)P(B1)=1-0.3×0.4=0.88.
所以甲、乙两人在第一次试跳中至少有一人成功的概率为0.88.
点评 本题考查事件的独立性,以及互斥事件和对立事件等知识,关键在于理解事件的性质,然后正确运用相应的概率公式加以求解. 归纳总结
1.对于事件A、B,如果事件A(或B)是否发生对事件B(或A)发生的概率没有影响,则称这两个事件为相互独立事件.如甲袋中装有3个白球,2个黑球,乙袋中装有2个白球,2个黑球,从这两个袋中分别摸出一个球,把“从甲袋中摸出1个球,得到白球”记为事件A,把“从乙袋中摸出1个球,得到白球”记为事件B,显然A与B互相独立.
2.弄清事件间的“互斥”与“相互独立”的区别.两个事件互斥是指两个事件不可能同时发生,两个事件相互独立是指一个事件的发生与否对另一个事件发生的概率没有影响. 3.理解并运用相互独立事件的性质.如果事件A与B相互独立,那么下列各对事件:A与B,
A与B,A与B也都相互独立.
4.牢记公式的应用条件,准确、灵活地运用公式.
5.认真审题,找准关键字句,提高解题能力.如“至少有一个发生”“至多有一个发生”“恰有一个发生”等.
3 概率题易错点剖析
概率内容的新概念较多,相近概念容易混淆,本文就学生易犯错误作如下总结: 1.“非等可能”与“等可能”混同
例1 掷两枚骰子,求所得的点数之和为6的概率.
金戈铁制卷
-------------------------天才是百分之一的灵感加百分之九十九的勤奋------------------------------
1
错解 掷两枚骰子出现的点数之和有2,3,4,…,12共11种基本事件,所以概率为P=.
11错因剖析 以上11种基本事件不是等可能的,如点数之和为2只有(1,1),而点数之和为6有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)共5种.事实上,掷两枚骰子共有36种基本事件,5
且是等可能的,所以“所得点数之和为6”的概率为P=.
362.“互斥”与“对立”混同
例2 把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是________.(填序号) ①对立事件; ②不可能事件; ③互斥但不对立事件; ④以上均不对. 错解 ①
错因剖析 本题错误的原因在于把“互斥”与“对立”混同,要准确解答这类问题,必须搞清对立事件与互斥事件的联系与区别,这二者的联系与区别主要体现在以下三个方面: (1)两事件对立,必定互斥,但互斥未必对立;
(2)互斥的概念适用于多个事件,但对立的概念只适用于两个事件;
(3)两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;而两事件对立则表明它们有且仅有一个发生.
事件“甲分得红牌”与“乙分得红牌”是不能同时发生的两个事件,这两个事件可能恰有一个发生,一个也不发生,可能两个都不发生,所以应填③. 正解 ③
3.“互斥”与“独立”混同
例3 甲投篮命中率为0.8,乙投篮命中率为0.7,每人投3次,两人恰好都命中2次的概率是多少?
错解 设“甲恰好投中两次”为事件A,“乙恰好投中两次”为事件B,则两人都恰好投中两次为事件A+B,P(A+B)=P(A)+P(B)=C3×0.8×0.2+C3×0.7×0.3=0.825.
错因剖析 本题错误的原因是把相互独立同时发生的事件当成互斥事件来考虑,将“两人都恰好投中2次”理解为“甲恰好投中两次”与“乙恰好投中两次”的和.
正解 设“甲恰好投中两次”为事件A,“乙恰好投中两次”为事件B,且A,B相互独立,则两人都恰好投中两次为事件AB,于是P(AB)=P(A)×P(B)=C3×0.8×0.2×C3×0.7×0.3≈0.169.
点评 例3错误的原因在于把两事件互斥与两事件相互独立混同.互斥事件是指两个事件不可能同时发生;两事件相互独立是指一个事件的发生与否对另一个事件的发生与否没有影响.它们虽然都描绘了两个事件间的关系,但所描绘的关系是根本不同的. 4.“条件概率P(B|A)”与“积事件的概率P(AB)”混同
金戈铁制卷
2222
2222
相关推荐: