七、 27.
(1)证明:
B ①连结BD F
∵AB是⊙O的直径
·O ∴∠ADB=90°
A ∴∠AGC=∠ADB=90°
l 又∵ACDB是⊙O内接四边形
C G E D ∴∠ACG=∠B
图(a) ∴∠BAD=∠CAG ······································ 3分
②连结CF
∵∠BAD=∠CAG ∠EAG=∠FAB ∴∠DAE=∠FAC 又∵∠ADC=∠F ∴△ADE∽△AFC ·············································································· 5分
ADAE =AFAC∴AC·AD=AE·AF ·············································································· 6分 (其他方法相应给分)
(2)①图形正确 ················································ 8分
C(D) G E ②两个结论都成立,证明如下:
B ①连结BC
F ∵AB是直径
O ∴∠ACB=90° · ∴∠ACB=∠AGC=90° A ∵GC切⊙O于C ∴∠GCA=∠ABC ∴∠BAC=∠CAG(即∠BAD=∠CAG) ······· 10分 图(b)
②连结CF
∵∠CAG=∠BAC,∠GCF=∠GAC
∴∠GCF=∠CAE,∠ACF=∠ACG-∠GFC,∠E=∠ACG-∠CAE ∴∠ACF=∠E ∴△ACF∽△AEC ∴
ACAF =AEAC∴AC2=AE·AF(即AC·AD=AE·AF) ········································· 12分 (注:其他方法证明,按相应步骤给分) ∴
八、
28.解:(1)直线y=?22x?8与x轴、y轴分别交于点C、P
y Q B ∴C(?22,0),P(0,-8)
∴cot∠OCD=22 cot∠OPC=22 ·D(0,1) C O F · A x ∴∠OCD=∠OPC
∵∠OPC+∠PCO=90° ∴∠OCD+∠PCO=90° ∴PC是⊙D的切线 ······································ 5分 (2)设直线PC上存在一点E(x,y),使S△EOP=4S△CDO
11?8?x?4??1?22 22P
由y??22x?8可知:
解得 x=±2 当x=2时,y=-12, 当x=-2时,y=-4·············································· 9分 ∴在直线PC上存在点E(2,-12)或(-2,-4)使S△EOP=4S△CDO ······ 10分
(注:只求出一个点,扣2分)
(3)解法一:
⌒ 于F,交⊙D于Q,连结DQ 作直线PF交劣弧AC
由切割线定理得:PC2=PF·PQ ····················· ① 在△CPD和△OPC中
∵∠PCD=∠POC=90° ∠CPD=∠OPC
PCPD =POPC即PC2=PO·PD ········································· ② 由①、②得:PO·PD=PF·PQ,又∵∠FPO=∠DPQ
PFPDm9=∴△FPO∽△DPQ ,即= FODQn3∴△CPD∽△OPC ∴
∴m=3n ··························································································· 13分 (2 y B ⌒ 于F 解法二:作直线PF交劣弧AC 设F(x,y),作FM⊥y轴,M为垂足,连结DF, ∵m2-(8+y)2=x2 n2-y2=x2 ∴m2-64-16y-y2=n2-y2 即 m2-64-16y=n2 ·········① 又∵32-(1-y)2=x2 x ∴32-(1-y)2=n2-y2 ·D(0,1) C O M F · A n2?8解得y= ··············② 2将②代入①,解得:m=3n,m=-3n(舍) ∴m=3n ·················································· 13分 (2 P
相关推荐: