一、选择题:本小题共8小题,每小题5分,共40分. 1.(5分)已知复数z满足(3+4i)z=25,则z=( ) A.3﹣4i B.3+4i C.﹣3﹣4i
D.﹣3+4i
2.(5分)已知集合M{﹣1,0,1},N={0,1,2},则M∪N=( ) A.{0,1}
B.{﹣1,0,1,2}
C.{﹣1,0,2} D.{﹣1,0,1}
3.(5分)若变量x,y满足约束条件,且z=2x+y的最大值和最小值分别为m和
n,则m﹣n=( ) A.5
B.6
C.7
D.8
﹣
=1与曲线
﹣
=1的( )
4.(5分)若实数k满足0<k<9,则曲线A.焦距相等
B.实半轴长相等 C.虚半轴长相等 D.离心率相等
5.(5分)已知向量=(1,0,﹣1),则下列向量中与成60°夹角的是( ) A.(﹣1,1,0)
B.(1,﹣1,0)
C.(0,﹣1,1)
D.(﹣1,0,1)
6.(5分)已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )
A.200,20
B.100,20
C.200,10
D.100,10
7.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是( ) A.l1⊥l4 B.l1∥l4
C.l1与l4既不垂直也不平行
D.l1与l4的位置关系不确定
8.(5分)设集合A={(x1,x2,x3,x4,x5)|xi∈{﹣1,0,1},i={1,2,3,4,5},那么
集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为( ) A.60
B.90
C.120 D.130
二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.(一)必做题(9~13题)
9.(5分)不等式|x﹣1|+|x+2|≥5的解集为.
10.(5分)曲线y=e﹣5x+2在点(0,3)处的切线方程为.
11.(5分)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.
12.(5分)在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则=.
13.(5分)若等比数列{an}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20=. (二)、选做题(14~15题,考生只能从中选作一题)【坐标系与参数方程选做题】 14.(5分)(极坐标与参数方程)在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cosθ和ρsinθ=1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2交点的直角坐标为. 【几何证明选讲选做题】
15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则
=.
三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(12分)已知函数f(x)=Asin(x+(1)求A的值;
(2)若f(θ)+f(﹣θ)=,θ∈(0,
),求f(
﹣θ).
),x∈R,且f(
)=.
17.(13分)随机观测生产某种零件的某工作厂25名工人的日加工零件个数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,
49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:
分组 [25,30] (30,35] (35,40] (40,45] (45,50]
频数 3 5 8 n1 n2
频率 0.12 0.20 0.32 f1 f2
(1)确定样本频率分布表中n1,n2,f1和f2的值; (2)根据上述频率分布表,画出样本频率分布直方图;
(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.
18.(13分)如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF; (2)求二面角D﹣AF﹣E的余弦值.
19.(14分)设数列{an}的前n项和为Sn,满足Sn=2nan+1﹣3n2﹣4n,n∈N*,且S3=15. (1)求a1,a2,a3的值; (2)求数列{an}的通项公式. 20.(14分)已知椭圆C:(1)求椭圆C的标准方程;
(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.
+
=1(a>b>0)的右焦点为(
,0),离心率为
.
相关推荐: