第一范文网 - 专业文章范例文档资料分享平台

2011中考数学专题复习 - 压轴题(含答案) 

来源:用户分享 时间:2025/5/15 7:40:46 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

新课标第一网(www.xkb1.com)--中小学教学资源共享平台

?在Rt△DOM中,DM??点D在第一象限, ?31,?点D的坐标为??22?12,OM?32

? ···························································································· 5分 ???由(1)知EO?AO?2,点E在y轴的正半轴上

2) ?点E的坐标为(0,····························································································· 6分 1) ·?点A的坐标为(?3,?抛物线y?ax?bx?c经过点E, ?c?2

2由题意,将A(?3,1),D??31,?22??代入y?ax2?bx?2中得 ???8??3a?3b?2?1a???9?? 解得 ??331b?2??b??53?a??422?9?892?所求抛物线表达式为:y??x?539························································· 9分 x?2 ·

(3)存在符合条件的点P,点Q. ············································································10分 理由如下:?矩形ABOC的面积?AB?BO?3 ?以O,B,P,Q为顶点的平行四边形面积为23.

由题意可知OB为此平行四边形一边, 又?OB?3

?OB边上的高为2······································································································11分

依题意设点P的坐标为(m,2)

89539?点P在抛物线y??x?2x?2上

??89m?2539m?2?2

新课标第一网----免费课件、教案、试题下载

新课标第一网(www.xkb1.com)--中小学教学资源共享平台

解得,m1?0,m2??538

?53??P1(0,2),P2??,2?

??8???以O,B,P,Q为顶点的四边形是平行四边形, ?PQ∥OB,PQ?OB?2)时, ?当点P1的坐标为(0,3,

y E A B F C D O M x

点Q的坐标分别为Q1(?3,2),Q2(3,2); 当点P2的坐标为?????53?,2?时, ?8????1338?,2?,Q4??点Q的坐标分别为Q3???33?··················································14分 ,2?.·??8???(以上答案仅供参考,如有其它做法,可参照给分) 19. 解:(1)在y????34x?3?0

234x?3中,令y?0

2?x1?2,x2??2

y C E N ····················································1分 ?A(?2,0),B(2,0) ·又?点B在y???0??b?3232?b

34x?b上

A M D O P B x

34x?32?BC的解析式为y?? ··················································································· 2分

32?y??x?3?x1??1??x2?2??4(2)由?,得? ·························································· 4分 9 ?y?033?2?y1??y??x??4??429??C??1,4??0) ?,B(2,?新课标第一网----免费课件、教案、试题下载

新课标第一网(www.xkb1.com)--中小学教学资源共享平台

?AB?4,CD?949 ···································································································· 5分

?9242(3)过点N作NP?MB于点P

?S△ABC?1?4? ······························································································ 6分

?EO?MB ?NP∥EO

?△BNP∽△BEO ····································································································· 7分

BNNP················································································································ 8分 ??BEEO由直线y??34x?32可得:E?0,?

?2?32?3??在△BEO中,BO?2,EO??2t52?NP3,则BE?52

,?NP?65t····························································································· 9分

216?S??t?(4?t)

253212S??t?t(0?t?4) ··························································································10分

553122S??(t?2)? ···································································································11分

5512 ?此抛物线开口向下,?当t?2时,S最大?512. ?当点M运动2秒时,△MNB的面积达到最大,最大为520. 解:(1)如图,过点B作BD⊥OA于点D. 在Rt△ABD中, ∵∣AB∣=35,sin∠OAB=

55,

∴∣BD∣=∣AB∣·sin∠OAB =35×又由勾股定理,得 AD? ?AB255=3.

?BD222

(35)?3?6

∴∣OD∣=∣OA∣-∣AD∣=10-6=4.

∵点B在第一象限,∴点B的坐标为(4,3). ??3分

新课标第一网----免费课件、教案、试题下载

新课标第一网(www.xkb1.com)--中小学教学资源共享平台

设经过O(0,0)、C(4,-3)、A(10,0)三点的抛物线的函数表达式为 y=ax+bx(a≠0).

1?a?,??16a?4b??3?8由? ???100a?10b?0?b??5.??42

∴经过O、C、A三点的抛物线的函数表达式为y?18x?254x. ??2分

(2)假设在(1)中的抛物线上存在点P,使以P、O、C、A为顶点的四边形为梯形 ①∵点C(4,-3)不是抛物线y?18x?254x的顶点,

∴过点C做直线OA的平行线与抛物线交于点P1 .

则直线CP1的函数表达式为y=-3. 对于y?18x?254x,令y=-3?x=4或x=6.

?x1?4,?x2?6,∴? ??y1??3;?y2??3.而点C(4,-3),∴P1(6,-3).

在四边形P1AOC中,CP1∥OA,显然∣CP1∣≠∣OA∣.

∴点P1(6,-3)是符合要求的点. ??1分 ②若AP2∥CO.设直线CO的函数表达式为y?k1x. 将点C(4,-3)代入,得4k1??3.?k1??∴直线CO的函数表达式为y??34x.

34x?b1. 34.

于是可设直线AP2的函数表达式为y??将点A(10,0)代入,得?34x?15234. 152∴直线AP2的函数表达式为y??x?.

315?y??x?.??422?x?4x?60?0,即(x-10)(x+6)=0. 由??y?1x2?5x?84??x1?10,?x2??6∴? ?y?0;y?12;?1?2而点A(10,0),∴P2(-6,12).

过点P2作P2E⊥x轴于点E,则∣P2E∣=12.

新课标第一网----免费课件、教案、试题下载

新课标第一网(www.xkb1.com)--中小学教学资源共享平台

在Rt△AP2E中,由勾股定理,得 AP2?P2E2?AE2?12?16?20.

22而∣CO∣=∣OB∣=5.

∴在四边形P2OCA中,AP2∥CO,但∣AP2∣≠∣CO∣.

∴点P2(-6,12)是符合要求的点. ??1分 ③若OP3∥CA,设直线CA的函数表达式为y=k2x+b2 将点A(10,0)、C(4,-3)代入,得

1?k?,?10k2?b2?0?2 ?2???4k2?b2??3?b??5.?2∴直线CA的函数表达式为y?∴直线OP3的函数表达式为y?1212x?5. x

1?y?x??22由??x?14x?0,即x(x-14)=0. ?y?1x2?5x?84??x1?0,?x2?14,∴? ?y?0;y?7.?1?2而点O(0,0),∴P3(14,7).

过点P3作P3E⊥x轴于点E,则∣P3E∣=7. 在Rt△OP3E中,由勾股定理,得 OP3?P3F2?OF2?7?14?75.

22而∣CA∣=∣AB∣=35.

∴在四边形P3OCA中,OP3∥CA,但∣OP3∣≠∣CA∣.

∴点P3(14,7)是符合要求的点. ??1分 综上可知,在(1)中的抛物线上存在点P1(6,-3)、P2(-6,12)、P3(14,7),

使以P、O、C、A为顶点的四边形为梯形. ??1分 (3)由题知,抛物线的开口可能向上,也可能向下.

①当抛物线开口向上时,则此抛物线与y轴的副半轴交与点N. 可设抛物线的函数表达式为y?a(x?2k)(x?5k)(a>0).

即y?ax?3akx?10ak

?a(x?32k)?222494ak.

2新课标第一网----免费课件、教案、试题下载

2011中考数学专题复习 - 压轴题(含答案) .doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c3f3nb1oo6h6et871e29l_8.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top