第一范文网 - 专业文章范例文档资料分享平台

高中数学必修五第一章 正弦定理 练习 有答案

来源:用户分享 时间:2025/6/1 7:44:52 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

π(2)由B=A+得 2?π?3cosB=cos?A+?=-sinA=-, 2?3?由A+B+C=π,得C=π-(A+B). 所以sinC=sin[π-(A+B)] =sin(A+B) =sinAcosB+cosAsinB 3?663??=×?-?+× ?3?3?331=. 3因此△ABC的面积 11132S=absinC=×3×32×=. 2232 B组 能力提升 11.若△ABC的三个内角A,B,C所对的边分别为a,b,c,asinAsinBb+bcosA=2a,则=( ) a2A.23 B.22 C.3 D.2 解析:由正弦定理得,sin2AsinB+sinBcos2A=2sinA,即sinB(sin2A+cos2A)=2sinA,故sinB=2sinA,所以=2. 答案:D 12.已知在△ABC中,A∶B∶C=1∶2∶3,a=1,则baa-2b+c=________. sinA-2sinB+sinC解析:∵A∶B∶C=1∶2∶3,

- 5 -

∴A=30°,B=60°,C=90°. ∵asinA=bsinB=csinC=1sin30°=2, ∴a=2sinA,b=2sinB,c=2sinC. ∴a-2b+csinA-2sinB+sinC=2. 答案:2 13. 如图,D是Rt△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠β. (1)证明:sinα+cos2β=0; (2)若AC=3DC,求β的值. 解:(1)证明:∵α=ππ2-(π-2β)=2β-2, ∴sinα=sin??π??2β-2??=-cos2β,即sinα+cos2β=0. (2)解:在△ADC中,由正弦定理, 得DCsinα=ACsinπ-β, 即DCsinα=3DCsinβ,∴sinβ=3sinα. 由(1)得sinα=-cos2β, ∴sinβ=-3cos2β=-3(1-2sin2β), 由23sin2β-sinβ-3=0, 解得sinβ=32或sinβ=-33. ∵0<β<π32,∴sinβ=π2,∴β=3. ABC- 6 -

= a+bsinB14.在△ABC中,已知=,且cos(A-B)+cosC=1asinB-sinA-cos2C. (1)试确定△ABC的形状; (2)求a+cb的取值范围. 解:(1)∵a+ba=sinBsinB-sinA,∴a+ba=bb-a, ∴b2-a2=ab. ∵cos(A-B)+cosC=1-cos2C, ∴cos(A-B)-cos(A+B)=2sin2C. ∴cosAcosB+sinAsinB-cosAcosB+sinAsinB=2sin2C. ∴2sinAsinB=2sin2C.∴sinAsinB=sin2C. ∴ab=c2.∴b2-a2=c2,即a2+c2=b2. ∴△ABC为直角三角形. (2)∵在△ABC中,B=π2, ∴A+C=π2,sinC=cosA. ∵a+cb=sinA+sinCsinB=sinA+sinC=sinA+cosA, sinπ2∴a+c?π?b=2sin??A+4??. ∵0

- 7 -

高中数学必修五第一章 正弦定理 练习 有答案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c3fymr2ba5x9bpag891bi6tck19hpxv003jy_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top