阳光家教网 www.ygjj.com 中考(初三复习)数学资料 8综上可得P点的生标共5个解,分别为P(-12,4)、P(-4,4)、P(-,4)、
3P(8,4)、P(4,4).
下面提供参考解法二:
以直角进行分类进行讨论(分三类): 第一类如上解法⑴中所示图
此时(D-b,o),E(O,2b) ?P为直角:设直线DE:y?2x?2b,b1b的中点坐标为(-,b),直线DE的中垂线方程:y?b??(x?),令y?4得
222P(3b3?8,4).由已知可得2PE?DE即2?(b?8)2?(4?2b)2?b2?4b2化简222得3b?32b?64?0解得 b1?8,b2?83b将之代入(P-8,4)?P(4,4)、 1?32P2(?4,4);
第二类如上解法②中所示图
此时(D-b,o),E(O,2b) ?E为直角:设直线DE:y?2x?2b,,直线PE的方程:y??1x?2b,令y?4得P(4b?8,4).由已知可得PE?DE即2(4b?8)2?(4?2b)2?b2?4b2化简得b2?(2b?8)2解之得 ,
b1?4,b2?84P4(?,4) 将之代入(P4b-8,4)?P3?(8,4)、33第三类如上解法③中所示图
此时(D-b,o),E(O,2b) ?D为直角:设直线DE:y?2x?2b,,直线PD的方程:y??(x?b),令y?4得P(?b?8,4).由已知可得PD?DE即 P-b-8,4)?P(-12,4)、82?42?b2?4b2解得b1?4,b2??4将之代入(5?12P6(?4,4)(P6(?4,4)与P2重合舍去).
综上可得P点的生标共5个解,分别为P(-12,4)、P(-4,4)、P(-P(8,4)、P(4,4).
8,4)、 3
阳光家教网 www.ygjj.com 中考(初三复习)数学资料 事实上,我们可以得到更一般的结论:
OA?h、如果得出AB?a、OC?b、设k?
b?a,则P点的情形如下 h直角分类情形 k?1 k?1 P1(h,h) ?P为直角 P1(?h,h) P2(?h,h) P3(?hk,h) 1?khkP4(,h) k?1hP2(?,h) 2?E为直角 P5(?h(k?1),h) ?D为直角 P3(0,h) P4(?2h,h) P6(?h(k?1),h)
9.
阳光家教网 www.ygjj.com 中考(初三复习)数学资料
10.
阳光家教网 www.ygjj.com 中考(初三复习)数学资料 11. 解:(1)设A地经杭州湾跨海大桥到宁波港的路程为x千米,
x?120x······································································································· 2分 ?, ·
1023解得x?180.
由题意得
?A地经杭州湾跨海大桥到宁波港的路程为180千米. ······················································ 4分 (2)1.8?180?28?2?380(元),
····························· 6分 ?该车货物从A地经杭州湾跨海大桥到宁波港的运输费用为380元. ·
(3)设这批货物有y车,
由题意得y[800?20?(y?1)]?380y?8320, ································································· 8分 整理得y2?60y?416?0,
解得y1?8,y2?52(不合题意,舍去), ······································································ 9分 ··········································································································· 10分 ?这批货物有8车. ·
12. 解:(1)2,21···························································································· 3分 a,a. ·
44(2)相等,比值为2. ·················· 5分(无“相等”不扣分有“相等”,比值错给1分) (3)设DG?x,
在矩形ABCD中,?B??C??D?90,
???HGF?90?,
??DHG??CGF?90???DGH,
?△HDG∽△GCF,
DGHG1???, CFGF2?CF?2DG?2x. ············································································································ 6分 同理?BEF??CFG. ?EF?FG,
?△FBE≌△GCF,
1?BF?CG?a?x. ········································································································ 7分
4?CF?BF?BC,
12?2x?a?x?a, ······································································································· 8分
44
阳光家教网 www.ygjj.com 中考(初三复习)数学资料 解得x?2?1a. 42?1·············································································································· 9分 a. ·
4即DG?(4)
32a, ······················································································································· 10分 1627?1822a. 12分 813. 解:(1)分别过D,C两点作DG⊥AB于点G,CH⊥AB于点H. ……………1分 ∵ AB∥CD, ∴ DG=CH,DG∥CH.
∴ 四边形DGHC为矩形,GH=CD=1.
∵ DG=CH,AD=BC,∠AGD=∠BHC=90°,
C D ∴ △AGD≌△BHC(HL).
M N AB?GH7?1∴ AG=BH==3. ………2分 ?22∵ 在Rt△AGD中,AG=3,AD=5, ∴ DG=4.
A B E G H F
1?7??4?∴ S梯形ABCD??16. ………………………………………………3分 2(2)∵ MN∥AB,ME⊥AB,NF⊥AB,
C D ∴ ME=NF,ME∥NF.
M N ∴ 四边形MEFN为矩形.
∵ AB∥CD,AD=BC, ∴ ∠A=∠B.
∵ ME=NF,∠MEA=∠NFB=90°, A B E G H F ∴ △MEA≌△NFB(AAS).
∴ AE=BF. ……………………4分 设AE=x,则EF=7-2x. ……………5分 ∵ ∠A=∠A,∠MEA=∠DGA=90°, ∴ △MEA∽△DGA.
AEME∴ . ?AGDG4∴ ME=x. …………………………………………………………6分
348?7?49∴ S矩形MEFN?ME?EF?x(7?2x)???x???. ……………………8分
33?4?677当x=时,ME=<4,∴四边形MEFN面积的最大值为49.……………9分
436(3)能. ……………………………………………………………………10分
4由(2)可知,设AE=x,则EF=7-2x,ME=x.
3
2
相关推荐: