第一范文网 - 专业文章范例文档资料分享平台

七年级下全等三角形练习题经典综合拔高题 

来源:用户分享 时间:2025/8/28 18:45:50 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

.

全等三角形综合练习题

1、 三角形全等的条件

(1)边边边公理:如果两个三角形的三条边分别对应相等,那么这两个三角形全等,简记为SSS (2)边角边公理:如果两个三角形的两边及其夹角分别对应相等,那么这两个三角形全等,简记为SAS

(3)角边角公理:如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等,简记为ASA

(4)角角边公理:有两个角和其中一角的对边对应相等的两个三角形全等,简记为AAS 2、直角三角形全等的特殊条件:斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”

3、选择证明三角形全等的方法(“题目中找,图形中看”) (1)已知两边对应相等

①证第三边相等,再用SSS证全等 ②证已知边的夹角相等,再用SAS证全等 ③找直角,再用HL证全等 (2)已知一角及其邻边相等

①证已知角的另一邻边相等,再用SAS证全等 ②证已知边的另一邻角相等,再用ASA证全等 ③证已知边的对角相等,再用AAS证全等 (3)已知一角及其对边相等 证另一角相等,再用AAS证全等 (4)已知两角对应相等

①证其夹边相等,再用ASA证全等 ②证一已知角的对边相等,再用AAS证全等 4、全等三角形中的基本图形的构造与运用

(1)出现角平分线时,常在角的两边截取相等的线段,构造全等三角形

知识点睛

'.

.

(2)出现线段的中点(或三角形的中线)时,可利用中点构造全等三角形(常用加倍延长中线) (3)利用加长(或截取)的方法解决线段的和、倍问题(转移线段)

经典例题

1. 已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.

求证:AC∥DF.

2. 如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.

3. 如图, 已知:AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF.求

证:AC=EF.

BEDCAGF

4. 如图,在ΔABC中,AC=AB,AD是BC边上的中线,则AD⊥BC,请说明理由。

A

CB D5. 如图,已知AB=DE,BC=EF,AF=DC,则∠EFD=∠BCA,请说明理由。 E ADCF B6. 如图,在ΔABC中,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2cm,

BD=3cm,求线段BC的长。

'.

.

A

E BCD7. 如图,ΔABC的两条高AD、BE相交于H,且AD=BD,试说明下列结论成立的理由。 (1)∠DBH=∠DAC; (2)ΔBDH≌ΔADC。 A

E H

BDC8. 如图,已知?ABC为等边三角形,D、E、F分别在边BC、CA、AB上,且?DEF也是等边

三角形.

(1) 除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的; (2) 你所证明相等的线段,可以通过怎样的变化相互得到?写出变化过程.

A

EFBDC9. 已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。

10. 如图,在矩形ABCD中,F是BC边上的一点,AF的延长线交DC的

延长线于G,DE⊥AG于E,且DE=DC,根据上述条件,请你在图中找出一对全等三角形,并证明你的结论。

'.

.

11. 已知:如图所示,BD为∠ABC的平分线,AB=BC,点P在BD上,PM

⊥AD于M,?PN⊥CD于N,判断PM与PN的关系. ADM PN

C

B

12. 如图所示,P为∠AOB的平分线上一点,PC⊥OA于C,?∠OAP+∠OBP=180°,若OC=4cm,求AO+BO

的值.

A C P OBD

13. 如图,∠ABC=90°,AB=BC,BP为一条射线,AD⊥BP,CE⊥PB,若AD=4,EC=2.求DE的长。

i.

14. 如图所示,A,E,F,C在一条直线上,AE=CF,过E,F分别作DE?⊥AC,BF⊥AC,若AB=CD,

可以得到BD平分EF,为什么?若将△DEC的边EC沿AC方向移动,变为如图所示时,其余条件不变,上述结论是否成立?请说明理由. BB

EGCGECA FAF DD

15. 如图,OE=OF,OC=OD,CF与DE交于点A,求证: AC=AD。

E C

AO

D F

16. 已知:如图E在△ABC的边AC上,且∠AEB=∠ABC。

'.

.

(1) 求证:∠ABE=∠C;

(2) 若∠BAE的平分线AF交BE于F,FD∥BC交AC于D,设AB=5,AC=8,求DC的长。

17. 如图∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2、5cm,DE=1.7cm,

求BE的长

18. 如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC, BC、DE交于点O.求证:(1) △ABC≌△AED;

(2) OB=OE .

19. 如图,D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,找出图中

的一组全等三角形,并说明理由. A E

D

B C

20. 已知:如图,B、E、F、C四点在同一条直线上,AB=DC,BE=CF,∠B=∠C.

求证:OA=OD.

'.

七年级下全等三角形练习题经典综合拔高题 .doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c3iqyd5525f2teb88j4i568ub00wtn20063x_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top