中考数学专题 分层专题
一次函数
1.(2019?鞍山)如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为( )
A.x> B.x< C.x>3 D.x<3
2.(2019?锦州)如图,一次函数y=2x+1的图象与坐标轴分别交于A,B两点,O为坐标原点,则△AOB的面积为( )
A. B.
C.2 D.4
3.(2019?遵义)如图所示,直线l1:y=x+6与直线l2:y=﹣x﹣2交于点P(﹣2,3),不等式x+6>﹣x﹣2的解集是( )
A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣2
4.(2019?鄂尔多斯)在“加油向未来”电视节目中,王清和李北进行无人驾驶汽车运送货物表演,王清操控的快车和李北操控的慢车分别从A,B两地同时出发,相向而行.快车
1
中考数学专题 分层专题
到达B地后,停留3秒卸货,然后原路返回A地,慢车到达A地即停运休息,如图表示的是两车之间的距离y(米)与行驶时间x(秒)的函数图象,根据图象信息,计算a、b的值分别为( )
A.39,26 B.39,26.4
C.38,26 D.38,26.4 5.(2019?辽阳)若ab<0且a>b,则函数y=ax+b的图象可能是( )
A. B.
C. D.
6.(2019?大庆)正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是( )
A. B.
2
中考数学专题 分层专题
C. D.
0)0)7.(2019?娄底)如图,直线y=x+b和y=kx+2与x轴分别交于点A(﹣2,,点B(3,,则
解集为( )
A.x<﹣2 B.x>3
C.x<﹣2或x>3 D.﹣2<x<3
8.(2019?辽阳)一条公路旁依次有A,B,C三个村庄,甲乙两人骑自行车分别从A村、B村同时出发前往C村,甲乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论: ①A,B两村相距10km; ②出发1.25h后两人相遇; ③甲每小时比乙多骑行8km;
④相遇后,乙又骑行了15min或65min时两人相距2km. 其中正确的个数是( )
A.1个 B.2个 C.3个
D.4个
3
中考数学专题 分层专题
B(﹣2,C(3,9.(2019?桂林)如图,四边形ABCD的顶点坐标分别为A(﹣4,0),﹣1),0),D(0,3),当过点B的直线l将四边形ABCD分成面积相等的两部分时,直线l所表示的函数表达式为( )
A.y=x+ B.y=x+
C.y=x+1 D.y=x+
10.(2019?包头)如图,在平面直角坐标系中,已知A(﹣3,﹣2),B(0,﹣2),C(﹣3,0)M是线段AB上的一个动点,,连接CM,过点M作MN⊥MC交y轴于点N,若点M、N在直线y=kx+b上,则b的最大值是( )
A.﹣ B.﹣ C.﹣1
D.0
11.(2019?济南)某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多 元.
4
中考数学专题 分层专题
12.(2019?丹东)如图,在平面直角坐标系中,点A,C分别在x轴、y轴上,四边形ABCO是边长为4的正方形,点D为AB的中点,点P为OB上的一个动点,连接DP,AP,当点P满足DP+AP的值最小时,直线AP的解析式为 .
13.(2019?鄂尔多斯)如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1
(4,4),A2(8,0)组成的折线依次平移8,16,24,…个单位得到的,直线y=kx+2与此折线有2n(n≥1且为整数)个交点,则k的值为 .
14.(2019?大连)甲、乙两人沿同一条直路走步,如果两人分别从这条直路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时间x(单位:min)的函数图象,图2是甲、乙两人之间的距离y(单位:m)与甲行走时间x(单位:min)的函数图象,则a﹣b= .
5
中考数学专题 分层专题
15.(2019?本溪)如图,点B1在直线l:y=x上,点B1的横坐标为2,过B1作B1A1⊥l,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;按照这个规律进行下去,点?n的横坐标为 (结果用含正整数n的代数式表示)
16.(2019?恩施州)某县有A、B两个大型蔬菜基地,共有蔬菜700吨.若将A基地的蔬菜全部运往甲市所需费用与B基地的蔬菜全部运往甲市所需费用相同.从A、B两基地运往甲、乙两市的运费单价如下表:
A基地 B基地 甲市(元/吨) 20 15 乙市(元/吨) 25 24 (1)求A、B两个蔬菜基地各有蔬菜多少吨?
(2)现甲市需要蔬菜260吨,乙市需要蔬菜440吨.设从A基地运送m吨蔬菜到甲市,请问怎样调运可使总运费最少?
6
中考数学专题 分层专题
17.(2019?永州)在一段长为1000的笔直道路AB上,甲、乙两名运动员均从A点出发进行往返跑训练.已知乙比甲先出发30秒钟,甲距A点的距离y(米)与其出发的时间x(分钟)的函数图象如图所示,乙的速度是150米分钟,且当乙到达B点后立即按原速返回.
(1)当x为何值时,两人第一次相遇? (2)当两人第二次相遇时,求甲的总路程.
18.(2019?沈阳)在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y轴于点B.
(1)k的值是 ;
(2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.
①如图,点E为线段OB的中点,且四边形OCED是平行四边形时,求?OCED的周长; ②当CE平行于x轴,CD平行于y轴时,连接DE,若△CDE的面积为出点C的坐标.
7
,请直接写
中考数学专题 分层专题
19.(2019?大连)如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=OC,以CO,CD为邻边作?COED.设点C的坐标为(0,m),?COED在x轴下方部分的面积为S.求: (1)线段AB的长;
(2)S关于m的函数解析式,并直接写出自变量m的取值范围.
20.(2019?徐州)如图①,将南北向的中山路与东西向的北京路看成两条直线,十字路口记作点A.甲从中山路上点B出发,骑车向北匀速直行;与此同时,乙从点A出发,沿y2m.北京路步行向东匀速直行.设出发xmin时,甲、乙两人与点A的距离分别为y1m、已知y1、y2与x之间的函数关系如图②所示.
(1)求甲、乙两人的速度;
(2)当x取何值时,甲、乙两人之间的距离最短?
8
相关推荐: