S1和S2表示劲度系数分别为k1和k2的两弹簧,k1>k2;a、b表示质量分别为ma和mb的两个小物【例28】
体,ma>mb,将弹簧与物体悬挂起来,如图所示.要求两弹簧的总长度最大,则应使( )
A.S1在上,a在上 C.S2在上,a在上
x?x上?x下?【解析】
B.S1在上,b在上 D.S2在上,b在上
(m上?m下)gm下gm?m下m下m?m下m上?m下m上??g(上?)?g(上??),当m上取最小
k上k下k上k下k上k下k下值,k下取最大值时伸长量x最大,弹簧总长度最大.答案:D.
【例29】 如图所示,物块的质量为M,与甲、乙两弹簧相连接,乙弹簧下端与地面连接,甲、
乙两弹簧质量不计,其劲度系数分别为k1、k2.起初甲弹簧处于自由长度,现用手将
2甲弹簧的A端缓慢上提,使乙弹簧产生的弹力大小变为原来的,求A端上移的距离
3是多少?
【解析】 本题运用胡克定律的增量式?F?k?x较为方便,这里分两种情况讨论:
(1)当弹簧乙仍处于压缩状态时,有:
MgMg11对乙:?F2?Mg,则?x2?;对甲:?F1?Mg,则?x1?,则A端上
3k23k133k?k移的距离为x1??x1??x2?12Mg.
3k1k2(2)当弹簧乙处于拉伸状态时,有:
2MgMg2对乙:?F3?Mg,则?x3?,其恢复原长时的距离?x4?;
3k2k235Mg25对甲:?F5?Mg?Mg?Mg,则?x5?,
3k1335(k1?k2)Mg. 则A端上移的距离为x2??x3??x4??x5?3k1k2
【例30】 如图所示,斜面静止于桌面上,物体m1置于斜面上,通过轻线跨过定滑轮
与m2、m3连接(滑轮的质量和摩擦不计),整个系统处于静止状态,m1<m2?m3. 现将m3解下,再叠放在m1的上方,系统仍处于静止,比较m1与斜面间的摩擦力F1和斜面与桌面间的摩擦力F2的大小变化情况,下列
叙述正确的是( ) A. F1一定变小,F2可能变小 B. F1一定变大,F2一定不变 C. F1可能变小,F2一定不变 D. F1可能变大,F2一定不变
【解析】未解下m3前,线上的拉力等于(m2?m3)g,由于m1gsin?一定小于(m2?m3)g,因而可判断出斜面
对m1的摩擦力F1沿斜面向下;解下m3并放在m1的上方后,绳上拉力等于m2g,但由于不知道(m1?m3)gsin?与m2g的大小关系,也就不清楚此时F1的方向,故无法判断F1的变化,可能变小,
也可能变大. 取三物体与斜面作为整体进行分析,可知F2始终为零. 故选项CD正确.
【答案】CD
【例31】 如图所示有黑白两条毛巾交替折叠放在地面上,白毛巾的中间用绳与
墙壁连接着,黑毛巾的中部用手将它拉住,欲将其分离开来,若两条毛巾的质量均为m,毛巾之间及其与地面之间的动摩擦因数为μ,问:将黑毛巾匀速拉出需加多大的水平力?如果有n条白、黑毛巾交替折叠放置着,要将n条黑毛巾一起匀速拉出,要多大的力?
【解析】 黑毛巾有四个面受到摩擦力,平衡时
力与平衡 题库 page 9 of 28
F?f1?f2?f3?f4???巾时,同理有:F?mgmgmgmg?mg???2???3???4?(1?2?3?4)?5?mg,有n条白黑毛222221μmg(1?2?3?????4n), 214n故F?μmg(1?4n)??(4n?1)nμmg
22
知识点睛
知识点2 力的合成与分解 1.力的合成
(1)求几个已知力的合力叫力的合成.力的合成就是找一个力去替代几个
已知的力,而不改变其作用效果.
(2)力的平行四边形定则:如右图所示,以表示两个力的有向线段为邻边
作平行四边形,这两边夹角的对角线大小和方向就表示合力的大小和方向.(只适用于共点力)
下面根据已知两个力夹角?的大小来讨论力的合成的几种情况:
①当??0?时,即F1、F2同向,此时合力最大,F?F1?F2,方向和两个力的方向相同.
②当??180?时,即F1、F2方向相反,此时合力最小,F?F1?F2,方向和F1、F2中较大的那个力相同.
③当??90?时,即F1、F2相互垂直,如图,F?F12?F22,tan??22④当?为任意角时,根据余弦定律,合力F?F1?F2?2F1F2cos?
F1. F2根据以上分析可知,无论两个力的夹角为多少,必然有F1?F2≤F≤F1?F2成立.
(3)力的三角形定则和多边形法则
力的平行四边形定则,也可以用力的矢量三角形表示,如图甲可用图乙的力的三角形法表示,即将待合成的力按原来力的方向“首”、“尾”相接,合力即为起于一个力的“首”,止于另一个力的“尾”的有向线段.
力的多边形法则:若是物体受到的几个力的合力为零,那么这几个力按照力的图示首尾相接,可以组成一个封闭的矢量多边形. (4)计算合力的方法
①图解法:从力的作用点起,依两个分力的作用方向按同一标度作出两个分力F1、F2,并构成一个平行四边形,这个平行四边形的对角线的长度按同样比例表示合力的大小.对角线的方向就是合力的方向,通常可用量角器直接量出合力F与某一个力(如F1)的夹角?,如图所示.
②计算法:从力的作用点按照分力的作用方向画出力的平行四边形,算出对角线所表示的合力的大小. 2.力的分解
(1)力的分解:求一个已知力的分力叫做力的分解.
分解规律:力的分解是力的合成的逆运算,同样遵守平行四边形定则,即把已知力作为平形四边形的对
角线,那么,与已知力共面的平行四边形的两条邻边就表示已知力的两个分力.
(2)力的分解方法
根据力F产生的作用效果,先确定两个分力的方向,再根据平行四边形定则用作图法作出两个分力F1和F2的示意图,最后根据相关数学知识计算出两个分力的大小.
实际上,对于同一条对角线,可以作出无数个不同的平行四边形.也就是
力与平衡 题库 page 10 of 28
说,同一个力可以分解为无数对大小、方向不同的分力.一个已知力究竟应该怎样分解,这要根据实际情况来决定. (3)力的正交分解方法
正交分解法是把力沿着两个经选定的互相垂直的方向作分解,其目的是便于运用普通代数运算公式来解决矢量的运算,它是处理力的合成和分解的复杂问题的一种简便方法,其步骤如下: ①正确选定直角坐标系.
通常选共点力的作用点为坐标原点,坐标轴方向的选择则应根据实际问题来确定,原则是使坐标轴与尽可能多的力重合,即:使向两坐标轴投影分解的力尽可能少.在处理静力学问题时,通常是选用水平方向和竖直方向上的直角坐标,当然在其他方向较为简便时也可选用.
②分别将各个力投影到坐标轴上,分别求出x轴和y轴上各力的投影的合力Fx和Fy:
Fx?F1x?F2x?F3x?? Fy?F1y?F2y?F3y??(式中的F1x和F1y是F1在x轴和y轴上的两个分量,其余类推.) 这样,共点力的合力大小为:F?Fx2?Fy2.
设合力的方向与x轴正方向之间的夹角为?,因为tan??FyFx,
所以,通过查数学用表,可得?数值,即得出合力F的方向.
特别的:若F?0,则可推得Fx?0,Fy?0.这是处理多个力作用下物体平衡问题的常用的好办法.
例题精讲
基础题
【例32】 两个大小确定的共点力F1和F2,若F1和F2夹角逐渐增大,则合力( )
A.大小不变 B.逐渐增大 C.逐渐减小 D.先减小后增大
【答案】 C
【例33】 三个大小相等互成120?角的力F1?F2?F3?F,它们合成后合力大小是( )
A.0 B.F C.2F D.3F
【答案】 A
【例34】 某物体在三个共点力作用下处于平衡状态,若把其中一个力F1的方向沿顺时针转过90?而保持其大
小不变,其余两个力保持不变,则此时物体所受到的合力大小为( ) A.F1 B.2F1 C.2F1 D.无法确定
【答案】 B
【例35】 大小分别为7N和5N的两个共点力,同时作用在一个物体上,对于合力大小的估计,下列说法正确
的是( )
A.一定不能等于12N B.一定不能大于12N C.一定不能小于12N D.一定大于等于5N且小于等于7N
【答案】 B
【例36】 分解一个力,若已知它的一个分力的大小和另一个分力的方向,以下说法中正确的是( )
A.只有惟一一组解 B.一定有两组解 C.可能有无数个解 D.可能有两组解
【答案】 D
【例37】 将一个力F?10N分解为两个分力,已知一个分力的方向与F成30?角,另一个分力的大小为6N,
则在分解中( ) A.有无数组解 B.有两解 C.有惟一解 D.无解
【答案】 B
力与平衡 题库 page 11 of 28
【例38】 在图中,AB、AC两光滑斜面互相垂直.AC与水平面成30?.若把球O的
重力按照其作用效果分解,则两个分力的大小分别为( )
33GG G,3G A., B.2222223G,G G,G C. D.2222【答案】 A
【例39】 如图所示,OA为一粗糙的木板,可绕O在竖直平面内转动,板上放一质量为m的物块,当缓慢使板沿逆时针方向转动,物块始终保持静止,则下列说法中正确的是( )
A.物块受到的静摩擦力逐渐增大 B.物块对木板的压力逐渐减小 C.物块受到的合力逐渐增大 D.木板对物块的支持力及静摩擦力的合力不变
【答案】 ABD
【例40】 (2007广东文科基础)如图,水平桌面上的物体A和B通过轻绳相连,在水平外力F的作用下做匀
速直线运动.已知绳中拉力为T. 桌面对两物体的摩擦力分别是fA和fB,则有( ) A.F?fA?fB?T B.F?fA?fB?T
C.F?fB D.T?fA
【解析】 以A、B整体为研究对象,由于整体做匀速直线运动,故整体受合外力为零,即F?fA?fB.对A物
体,合力为零,有T?fA,故D项正确.
【例41】 用三根轻绳将质量为m的物块悬挂在空中. 如图所示.已知绳ac和bc与竖直方向的夹角分别为30°和60°,则ac绳和bc绳中的拉力分别为( )
A.C.31mg,mg 2231mg,mg 4213B.mg,mg
2213D.mg,mg
42【解析】 结点受三个力,在这三个力的作用下处于平衡状态,作出矢量三角形后由几何知识可以得到答案.
13mg.答案:A 从矢量三角形中可以明显得到:Fbc?mg,Fac?22
中档题
【例42】 右图给出了六个力F1、F2、F3、F4、F4、F5、F6,它们作用于同一
点O,大小已在图中标出,相邻的两个力之间的夹角均为60?,则这六个力的合力大小为( ) A.20N B.40N C.60N D.0
【解析】 如下图所示,先作出三条直线上的两两合力:
F14?20N、F36?20N、F25?20N
由于三个合力之间夹角均为60?,则F14和F25的夹角为120?,它
力与平衡 题库 page 12 of 28
相关推荐: