第一范文网 - 专业文章范例文档资料分享平台

2017年山东省济南市中考数学试卷(含答案解析版)

来源:用户分享 时间:2025/5/29 2:04:36 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

形状并说明理由.问题探究:

(1)小婷同学提出解题思路:先探究△CEF的两条边是否相等,如EF=CF,以下是她的证明过程 证∴明∠:B延G长F线=段∠EDFE

交FC. B又的∵延∠长B线F于G点=G∠. D

∵FFE

是, B∴D△的B中G点F, ≌∴△BDF=EF

D(F

. A∵S∠AA

C)B. =∴∠EAFE=

DF=G9. 0∴

°C, F∴=EE

DF∥=CG.

EG.

请根据以上证明过程,解答下列两个问题: ①在图1中作出证明中所描述的辅助线;

②在证明的括号中填写理由(请在SAS,ASA,AAS,SSS中选择).

(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的度数,并判断△CEF的形状. 问题拓展:

(3)如图2,当△ADE绕点A逆时针旋转某个角度时,连接CE,延长DE交BC的延长线于点P,其他条件不变,判断△CEF的形状并给出证明. 【考点】RB:几何变换综合题.

【分析】(1)①由证明过程即可作出图形; ②根据判断三角形全等的方法即可得出结论;

(2)先判断出EH=DE,进而判断出四边形BGEH是平行四边形,得出∠DEF=∠H=30°,即可求出∠CEF=∠AED﹣∠DEF=60°,即可得出结论;

(3)先判断出△DEF≌△BGF(SAS),得出∠CAE=∠CBG,再判断出,

进而得出△BCG∽△ACE,得出∠BCG=∠ACE,进而判断出=90°,即可得出

CF=EF=EG,再求出=,最后用锐角三角函数求出∠CEG即可得出结论.

【解答】解:(1)①由题意作图如图1所示图形,

②证明:延长线段EF交CB的延长线于点G. ∵F是BD的中点, ∴BF=DF.

∵∠ACB=∠AED=90°, ∴ED∥CG. ∴∠BGF=∠DEF. 又∵∠BFG=∠DFE, ∴△BGF≌△DEF( ASA). ∴EF=FG.

∴CF=EF=EG. 故答案为ASA;

(2)如图3,延长BA,DE相交于点F, ∵∠BAC=60°, ∴∠EAH=60°=∠EAD, ∵∠AED=90°, ∴∠H=30°,EH=DE,

由(1)②知,△BGF≌△DEF, ∴DE=BG, ∴EH=BG, ∵DE∥BG,

∴四边形BGEH是平行四边形,∠DEF=∠H=30°, ∴∠CEF=∠AED﹣∠DEF=60°, ∵CF=EF,

∴△CEF是等边三角形;

(3)如图2,

延长EF至G使,FG=EF,

2017年山东省济南市中考数学试卷(含答案解析版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c3l2wa3rzcv9epjx24qwd4i6jo0x1m7012af_7.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top