课时分层作业(六) 诱导公式①、②、③、④
(建议用时:60分钟)
[合格基础练]
一、选择题
?π?1.计算sin?-?的值为( ) ?3?
1133A.- B. C. D.-
2222π3?π?D [sin?-?=-sin =-.]
32?3?
2.计算sin(π-α)-cos(π+α)cos(-α)+1的值是( ) A.1 C.0
2
2
B.2 D.2sinα
2
2
2
B [sin(π-α)-cos(π+α)cos(-α)+1=sinα+cosα+1=2.] 3.计算sin150°+sin135°+2sin 210°+cos225°的值是( ) 1
A. 411
C.
4
3B. 49D. 4
2
2
2
1111222
A [原式=sin30°+sin45°-2sin 30°+cos45°=+-1+=.] 42241?π?4.若sin(π-α)=log8 ,且α∈?-,0?,则cos(π+α)的值为( )
4?2?A.5
35
3
B.-5 3
C.±D.以上都不对
-2
B [∵sin(π-α)=sin α=log23 21-sinα=-
2
2
=-,∴cos(π+α)=-cos α=-
3
451-=-.] 93
?π?1?2π?5.已知tan?-α?= ,则tan?+α?=( ) ?3?3?3?
1
A. 323C.
3
1B.- 323D.-
3
B [∵tan?
?2π+α?=tan?π-?π-α??=-tan?π-α?,∴tan?2π+α?=-1.]
???3???3??3?3?3?????????
6.在△ABC中,给出下列四个式子:
① sin(A+B)+sin C;② cos(A+B)+cos C; ③sin(2A+2B)+sin 2C; ④cos(2A+2B)+cos 2C. 其中为常数的是( ) A.①③ C.①④
B [①sin(A+B)+sin C=2sin C; ②cos(A+B)+cos C=-cos C+cos C=0; ③sin(2A+2B)+sin 2C=sin[2(A+B)]+sin 2C =sin[2(π-C)]+sin 2C=sin(2π-2C)+sin 2C =-sin 2C+sin 2C=0;
④cos(2A+2B)+cos 2C=cos[2(A+B)]+cos 2C =cos[2(π-C)]+cos 2C=cos(2π-2C)+cos 2C =cos 2C+cos 2C=2cos 2C.故选B.] 二、填空题
3?π??5π?7.已知cos?+θ?= ,则cos?-θ?=________.
?6?3?6?-
35ππ5π?π? [∵-θ++θ=π,∴-θ=π-?+θ?,
3666?6?
B.②③ D.②④
∴cos?
?5π-θ?=cos?π-?π+θ??=-cos?π+θ?=-3.] ???6???6?3?6???????
sin?α-3π?+cos?π-α?
的值为________.
sin?-α?-cos?π+α?
8.若tan(5π+α)=m,则
m+1
[由tan(5π+α)=m,得tan α=m. m-1
-sin α-cos αtan α+1m+1
于是原式===.]
-sin α+cos αtan α-1m-1
12
9.已知cos(508°-α)= ,则cos(212°+α)=________.
1312
[由于cos(508°-α)=cos(360°+148°-α) 13
12
=cos(148°-α)= ,
13
所以cos(212°+α)=cos(360°+α-148°)=cos(α-148°)=cos(148°-α)
12=.] 13
三、解答题
10.在△ABC中,若sin(2π-A)=-2sin(π-B),3cos A=-2cos(π-B),求△ABC的三个内角.
[解] 由条件得sin A=2sin B,3cos A=2cos B, 平方相加得2cosA=1,cos A=±π3又∵A∈(0,π),∴A=或π.
44
33?π?当A=π时,cos B=-<0,∴B∈?,π?, 42?2?∴A,B均为钝角,不合题意,舍去. π3π7
∴A=,cos B=,∴B=,∴C=π.
42612ππ7
综上所述,A=,B=,C=π.
4612
[等级过关练]
1.若角α和β的终边关于y轴对称,则下列各式中正确的是( ) A.sin α=sin β C.tan α=tan β
B.cos α=cos β D.cos(2π-α)=cos β
2
2
, 2
A [∵α和β的终边关于y轴对称,∴不妨取α=π-β, ∴sin α=sin(π-β)=sin β.]
2.设f(x)=asin(πx+α)+bcos(πx+β)+4,其中a,b,α,β∈R,且ab≠0,
α≠kπ(k∈Z).若f(2 009)=5,则f(2 015)等于( )
A.4 C.-5
B.3 D.5
D [f(2 009)=-(asin α+bcos β)+4=5,
f(2 015)=-(asin α+bcos β)+4=5.]
3
3.已知cos(π+α)=-,π<α<2π,则sin(α-3π)+cos(α-π)=________.
5133 [∵cos(π+α)=-cos α=-,∴cos α=, 5553π4∵π<α<2π,∴<α<2π,∴sin α=-. 25
∴sin(α-3π)+cos(α-π)=-sin(3π-α)+cos(π-α)
相关推荐: