第一范文网 - 专业文章范例文档资料分享平台

钙钛矿science.-韩礼元-大面积器件

来源:用户分享 时间:2025/8/21 10:42:02 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

doi:10.1126/science.1245473

2. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gr?tzel, S. Mhaisalkar, T. C.

Sum, Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013). Medline

3. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-hole

diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015). Medline doi:10.1126/science.aaa5760

4. M. Liu, M. B. Johnston, H. J. Snaith, Efficient planar heterojunction perovskite

solar cells by vapour deposition. Nature 501, 395–398 (2013). Medline doi:10.1038/nature12509

5. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin,

M. Gr?tzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). Medline doi:10.1038/nature12340

6. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Solvent engineering

for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014). Medline doi:10.1038/nmat4014

7. N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Compositional

engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015). Medline doi:10.1038/nature14133

8. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015). Medline doi:10.1126/science.aaa9272

9. J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, S. H. Im, Stable semi-transparent

CH3NH3PbI3 planar sandwich solar cells. Energy Environ. Sci. 8, 1602–1608 (2015).

10. W. Nie, H. Tsai, R. Asadpour, J. C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet,

M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, A. D. Mohite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015). Medline doi:10.1126/science.aaa0472

11. J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H. W. Shin, T. K. Ahn, J.

H. Noh, S. C. Yoon, C. S. Hwang, S. I. Seok, Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv. Mater. 27, 4013–4019 (2015). Medline doi:10.1002/adma.201500523

12. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M.

Gr?tzel, H. Han, A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014). Medline

13. X. Li, M. Tschumi, H. Han, S. S. Babkair, R. A. Alzubaydi, A. A. Ansari, S. S. Habib,

M. K. Nazeeruddin, S. M. Zakeeruddin, M. Gr?tzel, Outdoor performance and stability under elevated temperatures and long-term light soaking of triple-layer mesoporous perovskite photovoltaics. Energy Technol. 3, 551–555 (2015). doi:10.1002/ente.201500045

14. Materials and methods are available as supplementary materials on Science

Online.

15. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Solar cell efficiency

tables (Version 45). Prog. Photovolt. Res. Appl. 23, 1–9 (2015). doi:10.1002/pip.2573

16. M. C. Beard, J. M. Luther, A. J. Nozik, The promise and challenge of

nanostructured solar cells. Nat. Nanotechnol. 9, 951–954 (2014). Medline doi:10.1038/nnano.2014.292

17. E. Zimmermann, P. Ehrenreich, T. Pfadler, J. A. Dorman, J. Weickert, L. Schmidt-Mende, Erroneous efficiency reports harm organic solar cell research. Nat. Photonics 8, 669–672 (2014). doi:10.1038/nphoton.2014.210

18. K. D. G. I. Jayawardena, L. J. Rozanski, C. A. Mills, S. R. P. Silva, The true status of

solar cell technology. Nat. Photonics 9, 207–208 (2015). doi:10.1038/nphoton.2015.45

19. Bringing solar cell efficiencies into the light. Nat. Nanotechnol. 9, 657 (2014). 20. O. Malinkiewicz, C. Roldán-Carmona, A. Soriano, E. Bandiello, L. Camacho, M. K.

Nazeeruddin, H. . Bolink, Metal-oxide-free methylammonium lead iodide perovskite-based solar cells: The influence of organic charge transport layers. Adv. Energy Mater. 4, 1400345 (2014). doi:10.1002/aenm.201400345

21. Z. Yang, B. Cai, B. Zhou, T. Yao, W. Yu, S. F. Liu, W.-H. Zhang, C. Li, An up-scalable

approach to CH3NH3PbI3 compact films for high-performance perovskite solar cells. Nano Energy 15, 670–678 (2015). doi:10.1016/j.nanoen.2015.05.027

22. M. Gr?tzel, The light and shade of perovskite solar cells. Nat. Mater. 13, 838–842

(2014). Medline doi:10.1038/nmat4065 23. M. Gunther, “Meteoritic rise of perovskite solar cells under scrutiny over

efficiencies,” Chemistry World, 2 March 2015; www.rsc.org/chemistryworld/2015/02/meteoritic-rise-perovskite-solar-cells-under-scrutiny-over-efficiencies.

24. H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, Y.

Yang, Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014). Medline doi:10.1126/science.1254050

25. O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K.

Nazeeruddin, H. J. Bolink, Perovskite solar cells employing organic charge-transport layers. Nat. Photonics 8, 128–132 (2014). doi:10.1038/nphoton.2013.341

26. Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, P. Meredith, Electro-optics of

perovskite solar cells. Nat. Photonics 9, 106–112 (2015). doi:10.1038/nphoton.2014.284

27. A. G. Aberle, Surface passivation of crystalline silicon solar cells: A review. Prog.

Photovolt. Res. Appl. 8, 473–487 (2000). doi:10.1002/1099-159X(200009/10)8:5<473::AID-PIP337>3.0.CO;2-D

28. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Solar cell efficiency

tables (version 46). Prog. Photovolt. Res. Appl. 23, 805–812 (2015). doi:10.1002/pip.2637

29. M. A. Wittenauer, L. L. Van Zandt, Surface conduction versus bulk conduction in

pure stoichiometric NiO crystals. Philos. Mag. B 46, 659–667 (1982). doi:10.1080/01418638208223551

30. J. H. Kim, P. W. Liang, S. T. Williams, N. Cho, C. C. Chueh, M. S. Glaz, D. S. Ginger,

A. K. Jen, High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv. Mater. 27, 695–701 (2015). Medline doi:10.1002/adma.201404189

31. Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan,

S. Yang, High-performance hole-extraction layer of sol–gel-processed NiOx nanocrystals for inverted planar perovskite solar cells. Angew. Chem. Int. Ed. 53, 12571–12575 (2014).

32. C. Wu, C. Yang, Effect of annealing temperature on the characteristics of the

modified spray deposited Li-doped NiO films and their applications in transparent heterojunction diode. Sol. Energy Mater. Sol. Cells 132, 492–498 (2015). doi:10.1016/j.solmat.2014.09.017

33. Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, K. Leo, Highly

conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv. Funct. Mater. 21, 1076–1081 (2011). doi:10.1002/adfm.201002290

34. X. F. Chen, H. M. Huang, X. L. Li, G. J. Liu, H. Zhang, Slightly focused high-energy

shockwave therapy: A potential adjuvant treatment for osteoporotic fracture. Int. J. Clin. Exp. Med. 8, 5044–5054 (2015). Medline

35. N. Alidoust, M. C. Toroker, J. A. Keith, E. A. Carter, Significant reduction in NiO

band gap upon formation of LixNi1–xO alloys: Applications to solar energy conversion. ChemSusChem 7, 195–201 (2014). Medline doi:10.1002/cssc.201300595

36. U. S. Joshi, Y. Matsumoto, K. Itaka, M. Sumiya, H. Koinuma, Combinatorial

synthesis of Li-doped NiO thin films and their transparent conducting properties. Appl. Surf. Sci. 252, 2524–2528 (2006). doi:10.1016/j.apsusc.2005.03.239

37. Z. Huang, X. Zeng, H. Wang, W. Zhang, Y. Li, M. Wang, Y.-B. Cheng, W. Chen,

Enhanced performance of p-type dye sensitized solar cells based on mesoporous Ni1?x MgxO ternary oxide films. RSC Adv. 4, 60670–60674 (2014). doi:10.1039/C4RA09727K

38. J. Deng, M. Mortazavi, N. V. Medhekar, J. Zhe Liu, Band engineering of Ni1?xMgxO

alloys for photocathodes of high efficiency dye-sensitized solar cells. J. Appl. Phys. 112, 123703 (2012). doi:10.1063/1.4769210

39. K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, A. J. Heeger, Air-stable polymer

electronic devices. Adv. Mater. 19, 2445–2449 (2007). doi:10.1002/adma.200602653

40. T. Kuwabara, T. Nakayama, K. Uozumi, T. Yamaguchi, K. Takahashi, Highly

durable inverted-type organic solar cell using amorphous titanium oxide as electron collection electrode inserted between ITO and organic layer. Sol. Energy Mater. Sol. Cells 92, 1476–1482 (2008). doi:10.1016/j.solmat.2008.06.012

41. T. Kuwabara, H. Sugiyama, T. Yamaguchi, K. Takahashi, Inverted type bulk-heterojunction organic solar cell using electrodeposited titanium oxide thin films as electron collector electrode. Thin Solid Films 517, 3766–3769 (2009). doi:10.1016/j.tsf.2008.12.039

/ sciencemag.org/content/early/recent / 29 October 2015 / Page 5 / 10.1126/science.aad1015

42. K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, H. J. Snaith, Sub-150 °C

processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ. Sci. 7, 1142–1147 (2014).

43. Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T.

Shimada, T. Hasegawa, A transparent metal: Nb-doped anatase TiO2. Appl. Phys. Lett. 86, 252101–252103 (2005). doi:10.1063/1.1949728

44. S. Braun, W. R. Salaneck, M. Fahlman, Energy-level alignment at organic/metal

and organic/organic interfaces. Adv. Mater. 21, 1450–1472 (2009). doi:10.1002/adma.200802893

45. J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K. Ahn,

C. Wolf, T. W. Lee, S. H. Im, Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate. Adv. Mater. 27, 3424–3430 (2015). Medline doi:10.1002/adma.201500048 46. X. Liu, H. Yu, L. Yan, Q. Dong, Q. Wan, Y. Zhou, B. Song, Y. Li, Triple cathode

buffer layers composed of PCBM, C60, and LiF for high-performance planar perovskite solar cells. ACS Appl. Mater. Interfaces 7, 6230–6237 (2015). Medline doi:10.1021/acsami.5b00468

47. J. Liu, Y. Shirai, X. Yang, Y. Yue, W. Chen, Y. Wu, A. Islam, L. Han, High-quality

mixed-organic-cation perovskites from a phase-pure non-stoichiometric intermediate (FAI)1–x-PbI2 for solar cells. Adv. Mater. 27, 4918–4923 (2015). Medline doi:10.1002/adma.201501489 48. P. Puspharajah, S. Radhakrishna, A. K. Arof, Transparent conducting lithium-doped nickel oxide thin films by spray pyrolysis technique. J. Mater. Sci. 32, 3001–3006 (1997). doi:10.1023/A:1018657424566 49. T. Dutta, P. Gupta, A. Gupta, J. Narayan, Effect of Li doping in NiO thin films on its

transparent and conducting properties and its application in heteroepitaxial p-n junctions. J. Appl. Phys. 108, 083715 (2010). doi:10.1063/1.3499276 50. T. Moehl, J. H. Im, Y. H. Lee, K. Domanski, F. Giordano, S. M. Zakeeruddin, M. I.

Dar, L. P. Heiniger, M. K. Nazeeruddin, N. G. Park, M. Gr?tzel, Strong

photocurrent amplification in perovskite solar cells with a porous TiO2 blocking layer under reverse bias. J. Phys. Chem. Lett. 5, 3931–3936 (2014). Medline ACKNOWLEDGMENTS

This work was partially supported by the Core Research for Evolutional Science and

Technology of the Japan Science and Technology Agency. The authors thank Dr. H. Kanai at Materials Analysis Station of NIMS, Japan for high resolution SEM image measurement, and Mr. T. Shimizu, Mr. T. Ishikawa for technical support. The author, L. Han, thanks for Prof. Hiroyoshi Naito of Osaka Prefecture University and Dr. Masafumi Shimizu of Institute of Advanced Energy, Kyoto University for their useful discussions. The author, M. Gr?tzel thanks for financial support of this work under the Swiss Nanotera and Swiss National Science Foundation PV2050 program and acknowledges his affiliation as a visiting

faculty member with Nanyang Technological University (NTU) Singapore and the Advanced Institute for Nanotechnology at Sungkyunkwan University (SKKU), Suwon, Korea. SUPPLEMENTARY MATERIALS

www.sciencemag.org/cgi/content/full/science.aad1015/DC1 Materials and Methods Figs. S1 to S15 Tables S1 to S3 References (48–50)

27 July 2015; accepted 14 October 2015 Published online 29 October 2015 10.1126/science.aad1015

/ sciencemag.org/content/early/recent / 29 October 2015 / Page 6 / 10.1126/science.aad1015

Fig. 1. Structure and band alignments of the PSC. (A) Scheme of the cell configuration highlighting the doped charge carrier extraction layers. The right

insets shows the composition of Ti(Nb)Ox and the crystal structure of lithium doped NixMg1–xO, denoted as NiMg(Li)O. (B) A high resolution cross–sectional SEM image of a complete solar cell (the

corresponding EDX analysis results are shown in fig. S5 (14),

demonstrating the presence of the p+–doped NixMg1–xO and n+–doped TiOx charge extraction layers). (C) Band alignments of the solar cell. The data of MAPbI3 and PCBM are taken from (11).

/ sciencemag.org/content/early/recent / 29 October 2015 / Page 7 / 10.1126/science.aad1015

Fig. 2. Dopant enhanced conductivity of NiO and TiOx. (A) Comparison of the conductivity mapping results for NiO (Left) and Li0.05Mg0.15Ni0.8O (Right) films. (B) Left: Comparison of the I–V curves of NiO and Li0.05Mg0.15Ni0.8O films deposited on FTO glass and Right: Comparison of the I–V curves for TiOx and Ti0.95Nb0.05Ox films deposited on PCBM/ITO glass, obtained by SPM measurements. Thickness was 20 nm for both NiO and TiOx based films.

/ sciencemag.org/content/early/recent / 29 October 2015 / Page 8 / 10.1126/science.aad1015

搜索更多关于: 钙钛矿science.-韩礼元-大面积器件 的文档
钙钛矿science.-韩礼元-大面积器件.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c3lnm369uwe8mpoi7oh3f_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top