doi:10.1126/science.1245473
2. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gr?tzel, S. Mhaisalkar, T. C.
Sum, Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013). Medline
3. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-hole
diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015). Medline doi:10.1126/science.aaa5760
4. M. Liu, M. B. Johnston, H. J. Snaith, Efficient planar heterojunction perovskite
solar cells by vapour deposition. Nature 501, 395–398 (2013). Medline doi:10.1038/nature12509
5. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin,
M. Gr?tzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). Medline doi:10.1038/nature12340
6. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Solvent engineering
for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014). Medline doi:10.1038/nmat4014
7. N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Compositional
engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015). Medline doi:10.1038/nature14133
8. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015). Medline doi:10.1126/science.aaa9272
9. J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, S. H. Im, Stable semi-transparent
CH3NH3PbI3 planar sandwich solar cells. Energy Environ. Sci. 8, 1602–1608 (2015).
10. W. Nie, H. Tsai, R. Asadpour, J. C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet,
M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, A. D. Mohite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015). Medline doi:10.1126/science.aaa0472
11. J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H. W. Shin, T. K. Ahn, J.
H. Noh, S. C. Yoon, C. S. Hwang, S. I. Seok, Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv. Mater. 27, 4013–4019 (2015). Medline doi:10.1002/adma.201500523
12. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M.
Gr?tzel, H. Han, A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014). Medline
13. X. Li, M. Tschumi, H. Han, S. S. Babkair, R. A. Alzubaydi, A. A. Ansari, S. S. Habib,
M. K. Nazeeruddin, S. M. Zakeeruddin, M. Gr?tzel, Outdoor performance and stability under elevated temperatures and long-term light soaking of triple-layer mesoporous perovskite photovoltaics. Energy Technol. 3, 551–555 (2015). doi:10.1002/ente.201500045
14. Materials and methods are available as supplementary materials on Science
Online.
15. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Solar cell efficiency
tables (Version 45). Prog. Photovolt. Res. Appl. 23, 1–9 (2015). doi:10.1002/pip.2573
16. M. C. Beard, J. M. Luther, A. J. Nozik, The promise and challenge of
nanostructured solar cells. Nat. Nanotechnol. 9, 951–954 (2014). Medline doi:10.1038/nnano.2014.292
17. E. Zimmermann, P. Ehrenreich, T. Pfadler, J. A. Dorman, J. Weickert, L. Schmidt-Mende, Erroneous efficiency reports harm organic solar cell research. Nat. Photonics 8, 669–672 (2014). doi:10.1038/nphoton.2014.210
18. K. D. G. I. Jayawardena, L. J. Rozanski, C. A. Mills, S. R. P. Silva, The true status of
solar cell technology. Nat. Photonics 9, 207–208 (2015). doi:10.1038/nphoton.2015.45
19. Bringing solar cell efficiencies into the light. Nat. Nanotechnol. 9, 657 (2014). 20. O. Malinkiewicz, C. Roldán-Carmona, A. Soriano, E. Bandiello, L. Camacho, M. K.
Nazeeruddin, H. . Bolink, Metal-oxide-free methylammonium lead iodide perovskite-based solar cells: The influence of organic charge transport layers. Adv. Energy Mater. 4, 1400345 (2014). doi:10.1002/aenm.201400345
21. Z. Yang, B. Cai, B. Zhou, T. Yao, W. Yu, S. F. Liu, W.-H. Zhang, C. Li, An up-scalable
approach to CH3NH3PbI3 compact films for high-performance perovskite solar cells. Nano Energy 15, 670–678 (2015). doi:10.1016/j.nanoen.2015.05.027
22. M. Gr?tzel, The light and shade of perovskite solar cells. Nat. Mater. 13, 838–842
(2014). Medline doi:10.1038/nmat4065 23. M. Gunther, “Meteoritic rise of perovskite solar cells under scrutiny over
efficiencies,” Chemistry World, 2 March 2015; www.rsc.org/chemistryworld/2015/02/meteoritic-rise-perovskite-solar-cells-under-scrutiny-over-efficiencies.
24. H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, Y.
Yang, Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014). Medline doi:10.1126/science.1254050
25. O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K.
Nazeeruddin, H. J. Bolink, Perovskite solar cells employing organic charge-transport layers. Nat. Photonics 8, 128–132 (2014). doi:10.1038/nphoton.2013.341
26. Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, P. Meredith, Electro-optics of
perovskite solar cells. Nat. Photonics 9, 106–112 (2015). doi:10.1038/nphoton.2014.284
27. A. G. Aberle, Surface passivation of crystalline silicon solar cells: A review. Prog.
Photovolt. Res. Appl. 8, 473–487 (2000). doi:10.1002/1099-159X(200009/10)8:5<473::AID-PIP337>3.0.CO;2-D
28. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Solar cell efficiency
tables (version 46). Prog. Photovolt. Res. Appl. 23, 805–812 (2015). doi:10.1002/pip.2637
29. M. A. Wittenauer, L. L. Van Zandt, Surface conduction versus bulk conduction in
pure stoichiometric NiO crystals. Philos. Mag. B 46, 659–667 (1982). doi:10.1080/01418638208223551
30. J. H. Kim, P. W. Liang, S. T. Williams, N. Cho, C. C. Chueh, M. S. Glaz, D. S. Ginger,
A. K. Jen, High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv. Mater. 27, 695–701 (2015). Medline doi:10.1002/adma.201404189
31. Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan,
S. Yang, High-performance hole-extraction layer of sol–gel-processed NiOx nanocrystals for inverted planar perovskite solar cells. Angew. Chem. Int. Ed. 53, 12571–12575 (2014).
32. C. Wu, C. Yang, Effect of annealing temperature on the characteristics of the
modified spray deposited Li-doped NiO films and their applications in transparent heterojunction diode. Sol. Energy Mater. Sol. Cells 132, 492–498 (2015). doi:10.1016/j.solmat.2014.09.017
33. Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, K. Leo, Highly
conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv. Funct. Mater. 21, 1076–1081 (2011). doi:10.1002/adfm.201002290
34. X. F. Chen, H. M. Huang, X. L. Li, G. J. Liu, H. Zhang, Slightly focused high-energy
shockwave therapy: A potential adjuvant treatment for osteoporotic fracture. Int. J. Clin. Exp. Med. 8, 5044–5054 (2015). Medline
35. N. Alidoust, M. C. Toroker, J. A. Keith, E. A. Carter, Significant reduction in NiO
band gap upon formation of LixNi1–xO alloys: Applications to solar energy conversion. ChemSusChem 7, 195–201 (2014). Medline doi:10.1002/cssc.201300595
36. U. S. Joshi, Y. Matsumoto, K. Itaka, M. Sumiya, H. Koinuma, Combinatorial
synthesis of Li-doped NiO thin films and their transparent conducting properties. Appl. Surf. Sci. 252, 2524–2528 (2006). doi:10.1016/j.apsusc.2005.03.239
37. Z. Huang, X. Zeng, H. Wang, W. Zhang, Y. Li, M. Wang, Y.-B. Cheng, W. Chen,
Enhanced performance of p-type dye sensitized solar cells based on mesoporous Ni1?x MgxO ternary oxide films. RSC Adv. 4, 60670–60674 (2014). doi:10.1039/C4RA09727K
38. J. Deng, M. Mortazavi, N. V. Medhekar, J. Zhe Liu, Band engineering of Ni1?xMgxO
alloys for photocathodes of high efficiency dye-sensitized solar cells. J. Appl. Phys. 112, 123703 (2012). doi:10.1063/1.4769210
39. K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, A. J. Heeger, Air-stable polymer
electronic devices. Adv. Mater. 19, 2445–2449 (2007). doi:10.1002/adma.200602653
40. T. Kuwabara, T. Nakayama, K. Uozumi, T. Yamaguchi, K. Takahashi, Highly
durable inverted-type organic solar cell using amorphous titanium oxide as electron collection electrode inserted between ITO and organic layer. Sol. Energy Mater. Sol. Cells 92, 1476–1482 (2008). doi:10.1016/j.solmat.2008.06.012
41. T. Kuwabara, H. Sugiyama, T. Yamaguchi, K. Takahashi, Inverted type bulk-heterojunction organic solar cell using electrodeposited titanium oxide thin films as electron collector electrode. Thin Solid Films 517, 3766–3769 (2009). doi:10.1016/j.tsf.2008.12.039
/ sciencemag.org/content/early/recent / 29 October 2015 / Page 5 / 10.1126/science.aad1015
42. K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, H. J. Snaith, Sub-150 °C
processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ. Sci. 7, 1142–1147 (2014).
43. Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T.
Shimada, T. Hasegawa, A transparent metal: Nb-doped anatase TiO2. Appl. Phys. Lett. 86, 252101–252103 (2005). doi:10.1063/1.1949728
44. S. Braun, W. R. Salaneck, M. Fahlman, Energy-level alignment at organic/metal
and organic/organic interfaces. Adv. Mater. 21, 1450–1472 (2009). doi:10.1002/adma.200802893
45. J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K. Ahn,
C. Wolf, T. W. Lee, S. H. Im, Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate. Adv. Mater. 27, 3424–3430 (2015). Medline doi:10.1002/adma.201500048 46. X. Liu, H. Yu, L. Yan, Q. Dong, Q. Wan, Y. Zhou, B. Song, Y. Li, Triple cathode
buffer layers composed of PCBM, C60, and LiF for high-performance planar perovskite solar cells. ACS Appl. Mater. Interfaces 7, 6230–6237 (2015). Medline doi:10.1021/acsami.5b00468
47. J. Liu, Y. Shirai, X. Yang, Y. Yue, W. Chen, Y. Wu, A. Islam, L. Han, High-quality
mixed-organic-cation perovskites from a phase-pure non-stoichiometric intermediate (FAI)1–x-PbI2 for solar cells. Adv. Mater. 27, 4918–4923 (2015). Medline doi:10.1002/adma.201501489 48. P. Puspharajah, S. Radhakrishna, A. K. Arof, Transparent conducting lithium-doped nickel oxide thin films by spray pyrolysis technique. J. Mater. Sci. 32, 3001–3006 (1997). doi:10.1023/A:1018657424566 49. T. Dutta, P. Gupta, A. Gupta, J. Narayan, Effect of Li doping in NiO thin films on its
transparent and conducting properties and its application in heteroepitaxial p-n junctions. J. Appl. Phys. 108, 083715 (2010). doi:10.1063/1.3499276 50. T. Moehl, J. H. Im, Y. H. Lee, K. Domanski, F. Giordano, S. M. Zakeeruddin, M. I.
Dar, L. P. Heiniger, M. K. Nazeeruddin, N. G. Park, M. Gr?tzel, Strong
photocurrent amplification in perovskite solar cells with a porous TiO2 blocking layer under reverse bias. J. Phys. Chem. Lett. 5, 3931–3936 (2014). Medline ACKNOWLEDGMENTS
This work was partially supported by the Core Research for Evolutional Science and
Technology of the Japan Science and Technology Agency. The authors thank Dr. H. Kanai at Materials Analysis Station of NIMS, Japan for high resolution SEM image measurement, and Mr. T. Shimizu, Mr. T. Ishikawa for technical support. The author, L. Han, thanks for Prof. Hiroyoshi Naito of Osaka Prefecture University and Dr. Masafumi Shimizu of Institute of Advanced Energy, Kyoto University for their useful discussions. The author, M. Gr?tzel thanks for financial support of this work under the Swiss Nanotera and Swiss National Science Foundation PV2050 program and acknowledges his affiliation as a visiting
faculty member with Nanyang Technological University (NTU) Singapore and the Advanced Institute for Nanotechnology at Sungkyunkwan University (SKKU), Suwon, Korea. SUPPLEMENTARY MATERIALS
www.sciencemag.org/cgi/content/full/science.aad1015/DC1 Materials and Methods Figs. S1 to S15 Tables S1 to S3 References (48–50)
27 July 2015; accepted 14 October 2015 Published online 29 October 2015 10.1126/science.aad1015
/ sciencemag.org/content/early/recent / 29 October 2015 / Page 6 / 10.1126/science.aad1015
Fig. 1. Structure and band alignments of the PSC. (A) Scheme of the cell configuration highlighting the doped charge carrier extraction layers. The right
insets shows the composition of Ti(Nb)Ox and the crystal structure of lithium doped NixMg1–xO, denoted as NiMg(Li)O. (B) A high resolution cross–sectional SEM image of a complete solar cell (the
corresponding EDX analysis results are shown in fig. S5 (14),
demonstrating the presence of the p+–doped NixMg1–xO and n+–doped TiOx charge extraction layers). (C) Band alignments of the solar cell. The data of MAPbI3 and PCBM are taken from (11).
/ sciencemag.org/content/early/recent / 29 October 2015 / Page 7 / 10.1126/science.aad1015
Fig. 2. Dopant enhanced conductivity of NiO and TiOx. (A) Comparison of the conductivity mapping results for NiO (Left) and Li0.05Mg0.15Ni0.8O (Right) films. (B) Left: Comparison of the I–V curves of NiO and Li0.05Mg0.15Ni0.8O films deposited on FTO glass and Right: Comparison of the I–V curves for TiOx and Ti0.95Nb0.05Ox films deposited on PCBM/ITO glass, obtained by SPM measurements. Thickness was 20 nm for both NiO and TiOx based films.
/ sciencemag.org/content/early/recent / 29 October 2015 / Page 8 / 10.1126/science.aad1015
相关推荐: