二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数.
当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有ax2+bx+c=0. ①
并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标(纵坐标为零),于是,不难发现,
抛物线y=ax2+bx+c(a≠0)与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b2-4ac存在下列关系:
(1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,则Δ>0也成立.
(2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,则Δ=0也成立.
(3)当Δ<0时,抛物线y=ax2+bx+c(a≠0)与x轴没有交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴没有交点,则Δ<0也成立.
于是,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点A(x1,0),B(x2,0),则x1,x2是方程ax2+bx+c=0的两根,所以
bcbc,x1x2=,即 =-(x1+x2), =x1x2. aaaabc2所以,y=ax2+bx+c=a(x?x?) = a[x2-(x1+x2)x+x1x2]=a(x-x1) (x-x2).
aax1+x2=? 由上面的推导过程可以得到下面结论:
若抛物线y=ax2+bx+c(a≠0)与x轴交于A(x1,0),B(x2,0)两点,则其函数关系式可以表示为y=a(x-x1) (x-x2) (a≠0). 这样,也就得到了表示二次函数的第三种方法:
3.交点式:y=a(x-x1) (x-x2) (a≠0),其中x1,x2是二次函数图象与x轴交点的横坐标.
今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题.
例1 已知某二次函数的最大值为2,图像的顶点在直线y=x+1上,并且图象经过点(3,-1),求二次函数的解析式.
分析:在解本例时,要充分利用题目中所给出的条件——最大值、顶点位置,从而可以将二次函数设成顶点式,再由函数图象过定点来求解出系数a.
解:∵二次函数的最大值为2,而最大值一定是其顶点的纵坐标,
∴顶点的纵坐标为2.
又顶点在直线y=x+1上, 所以,2=x+1,∴x=1. ∴顶点坐标是(1,2).
设该二次函数的解析式为y?a(x?2)2?1(a?0), ∵二次函数的图像经过点(3,-1),
2∴?1?a(3?2)?1,解得a=-2. ∴二次函数的解析式为y??2(x?2)2?1,即y=-2x2+8x-7.
说明:在解题时,由最大值确定出顶点的纵坐标,再利用顶点的位置求出顶点坐标,然后设出二次函数的顶点式,最终解决了问题.因此,在解题时,要充分挖掘题目所给的条件,并巧妙地利用条件简捷地解决问题.
例2 已知二次函数的图象过点(-3,0),(1,0),且顶点到x轴的距离等于2,求此二次函数的表达式.
分析一:由于题目所给的条件中,二次函数的图象所过的两点实际上就是二次函数的图象与x轴的交点坐标,于是可以将函数的表达式设成交点式.
解法一:∵二次函数的图象过点(-3,0),(1,0), ∴可设二次函数为y=a(x+3) (x-1) (a≠0),
21
展开,得 y=ax2+2ax-3a,
?12a2?4a2??4a, 顶点的纵坐标为
4a由于二次函数图象的顶点到x轴的距离2, ∴|-4a|=2,即a=?1. 2所以,二次函数的表达式为y=
12313x?x?,或y=-x2?x?. 2222 分析二:由于二次函数的图象过点(-3,0),(1,0),所以,对称轴为直线x=-1,又由顶点到x轴
的距离为2,可知顶点的纵坐标为2,或-2,于是,又可以将二次函数的表达式设成顶点式来解,然后再利用图象过点(-3,0),或(1,0),就可以求得函数的表达式. 解法二:∵二次函数的图象过点(-3,0),(1,0),
∴对称轴为直线x=-1. 又顶点到x轴的距离为2, ∴顶点的纵坐标为2,或-2.
于是可设二次函数为y=a(x+1)2+2,或y=a(x+1)2-2, 由于函数图象过点(1,0),
∴0=a(1+1)2+2,或0=a(1+1)2-2.
∴a=-
11,或a=. 2211(x+1)2+2,或y=(x+1)2-2. 22所以,所求的二次函数为y=- 说明:上述两种解法分别从与x轴的交点坐标及顶点的坐标这两个不同角度,利用交点式和顶点式来
解题,在今后的解题过程中,要善于利用条件,选择恰当的方法来解决问题.
例3 已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式. 解:设该二次函数为y=ax2+bx+c(a≠0).
由函数图象过点(-1,-22),(0,-8),(2,8),可得
??22?a?b?c,? ??8?c,?8?4a?2b?c,? 解得 a=-2,b=12,c=-8.
所以,所求的二次函数为y=-2x2+12x-8.
通过上面的几道例题,同学们能否归纳出:在什么情况下,分别利用函数的一般式、顶点式、交点式来求二次函数的表达式?
练 习 1.选择题:
(1)函数y=-x2+x-1图象与x轴的交点个数是 ( ) (A)0个 (B)1个 (C)2个 (D)无法确定
1
(2)函数y=- (x+1)2+2的顶点坐标是 ( )
2
(A)(1,2) (B)(1,-2) (C)(-1,2) (D)(-1,-2) 2.填空:
(1)已知二次函数的图象经过与x轴交于点(-1,0)和(2,0),则该二次函数的解析式可设为y=a
(a≠0) .
(2)二次函数y=-x2+23x+1的函数图象与x轴两交点之间的距离为 . 3.根据下列条件,求二次函数的解析式.
(1)图象经过点(1,-2),(0,-3),(-1,-6); (2)当x=3时,函数有最小值5,且经过点(1,11);
(3)函数图象与x轴交于两点(1-2,0)和(1+2,0),并与y轴交于(0,-2).
22
2.2.3 二次函数的简单应用
一、函数图象的平移变换与对称变换 1.平移变换
问题1 在把二次函数的图象进行平移时,有什么特点?依据这一特点,可以怎样来研究二次函数的图象平移? 我们不难发现:在对二次函数的图象进行平移时,具有这样的特点——只改变函数图象的位置、不改变其形状,因此,在研究二次函数的图象平移问题时,只需利用二次函数图象的顶点式研究其顶点的位置即可. 例1 求把二次函数y=x2-4x+3的图象经过下列平移变换后得到的图象所对应的函数解析式: (1)向右平移2个单位,向下平移1个单位; (2)向上平移3个单位,向左平移2个单位. 分析:由于平移变换只改变函数图象的位置而不改变其形状(即不改变二次项系数),所以只改变二次函数图象的顶点位置(即只改变一次项和常数项),所以,首先将二次函数的解析式变形为顶点式,然后,再依据平移变换后的二次函数图象的顶点位置求出平移后函数图像所对应的解析式. 解:二次函数y=2x2-4x-3的解析式可变为 y=2(x-1)2-1, 其顶点坐标为(1,-1). (1)把函数y=2(x-1)2-1的图象向右平移2个单位,向下平移1个单位后,其函数图象的顶点坐标是(3,-2),所以,平移后所得到的函数图象对应的函数表达式就为 y=2(x-3)2-2. (2)把函数y=2(x-1)2-1的图象向上平移3个单位,向左平移2个单位后,其函数图象的顶点坐标是(-1, 2),所以,平移后所得到的函数图象对应的函数表达式就为 y=2(x+1)2+2.
问题2 在把二次函数的图象关于与坐标轴平行的直线进行对称变换时,有什么特点?依据这一特点,可以怎样来研究二次函数的图象平移? 我们不难发现:在把二次函数的图象关于与坐标轴平行的直线进行对称变换时,具有这样的特点——只改变函数图象的位置或开口方向、不改变其形状,因此,在研究二次函数图象的对称变换问题时,关键是要抓住二次函数的顶点位置和开口方向来解决问题. 例2 求把二次函数y=2x2-4x+1的图象关于下列直线对称后所
y 得到图象对应的函数解析式:
x=-1 (1)直线x=-1; (2)直线y=1. 解:(1)如图2.2-7,把二次函数y=2x2-4x+1的图象关于直线x=-1作对称变换后,只改变图象的顶点位置,不改变其形状. 由于y=2x2-4x+1=2(x-1)2-1,可知,函数y=2x2-4x+1图O x 象的顶点为A(1,-1),所以,对称后所得到图象的顶点为A1(-3,1),A(1,-1) A1(-3,-1) 2
所以,二次函数y=2x-4x+1的图象关于直线x=-1对称后所得到图象的函数解析式为y=2(x+3)2-1,即y=2x2+12x+17. y 图2.2-7 2B(1,3) (2)如图2.2-8,把二次函数y=2x-4x+1的图象关于直线x
=-1作对称变换后,只改变图象的顶点位置和开口方向,不改变其形状. 由于y=2x2-4x+1=2(x-1)2-1,可知,函数y=2x2-4x+1图象的顶点为A(1,y=-1),所以,对称后所得到图象的顶点为B(1,3),且开口向下,所以,二次函数y1 =2x2-4x+1的图象关于直线y=1对称后所得到图象的函数解析式为y=-2(x-1)2
O x +3,即y=-2x2+4x+1.
A(1,-1)
练 习 1.选择题: 图2.2-8
2
把函数y=-(x-1)+4的图象向左平移2个单位,向下平移3个单位,所得图象对应的解析式为 ( )
(A)y= (x+1)2+1 (B)y=-(x+1)2+1 (C)y=-(x-3)2+4 (D)y=-(x-3)2+1
2.对称变换
23
2某商场销售一批名脾衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现每件衬衫降价1元, 商场平均每天可多售出2件: (1)若商场平均每天要盈利1200元,每件衬衫要降价多少元, (2)每件衬衫降价多少元时,商场平均每天盈利最多?
2.3.1二元二次方程组、简单的二元二次方程组的解法
一、知识概述 1、二元二次方程
含有两个未知数,并且含有未知数的项的最高次数是2的整式方程叫二元二次方程.
关于x、y的二元二次方程的一般形式为ax2+bxy+cy2+dx+ey+f=0(a、b、c至少有一个不为0),其中ax2、bxy、cy2叫做二次项,a、b、c分别是二次项的系数;dx、ey叫做一次项,d、e分别是一次项的系数;f叫做常数项.
例,xy=1,x2-y=0,x-y-2xy=-3都是二元二次方程;x-y=1,x2y=0都不是二元二次方程. 2、二元二次方程组
由一个二元一次方程和一个二元二次方程组组成的方程组,或者由两个二元二次方程组成的方程组叫二元二次方程组.
3、解二元二次方程组的思想和方法
解二元二次方程组的基本思想是“转化”,将二元转化为一元,将二次转化为一次,转化的基本方法是“消元”和“降次”.因此,掌握好消元和降次的一些方法和技巧是解二元二次方程组的关键. 二、重点、难点和疑点突破
1、由一个二元一次方程和一个二元二次方程组成的方程组的解法(简称“二·一”型方程组) (1)代入消元法(即代入法) 代入法是解“二·一”型方程组的一般方法,具体步骤是:
①先将方程组中的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数; ②把所得的代数式代入另一个方程中,使其转化为一个一元二次方程或一元一次方程; ③解所得的一元二次方程或一元一次方程,求出一个未知数的值;
④把所求的未知数的值代入第一步所得的关系中求出另一个未知数的值; ⑤写出方程组的解. (2)逆用根与系数关系定理法
对“二·一”型二元二次方程组成的形如的方程组,可以根据一元二次方程根与系数的关系,把x、y看成一元二次方程z2-az+b=0的两个根,解这个方程,求得的z1和z2的值,就是x,y的值,当x1=z1时,y1=z2;当x2=z2时,y2=z1,所以原方程组的解是两组“对称解”. 2、对“二·一”型的二元二次方程组的解的情况的判别 “二·一”型的二元二次方程组的实数解有三种情况:有一解、两解和没有解.把一元一次方程代入二元二次方程,消去一个未知数之后,得到一个一元二次方程.由根的判别式可知,解的情况可能是有两个不相等的实数解,两个相等的实数解或无实数解,这样的二元二次方程组的解也就相应地有三种情况.简言之,有一个二元一次方程的二元二次方程组的实数解的情况,一般可通过一元二次方程的根的判别式来判断. 3、“二·二”型方程组的解法 解“二·二”型方程组的基本思想仍是“转化”,转化的方法是“降次”、“消元”.它的一般解法是: (1)当方程组中只有一个可分解为两个二元一次方程的方程时,可将分解得到的两个二元一次方程分别与原方程组中的另一个二元二次方程组成两个“二·一”型方程组,解这两个“二·一”型方程组,所得的解都是原方程组的解.
24
相关推荐: