设线段PQ中点为N,则点N的坐标为(2?k2k?2k?2,22),由题意有kMN?k??1,
m?可得
2211k?2?k??1.可得m?k?0,又,所以. 0?m?2kk?22k?2(
S?MPQ?12Ⅲ)设椭圆
2上焦
2点,
为
F,则
?FM?x1?x2.x1?x2?(x1?x2)?4x1x2?8(k?1)(k?2)8(1m1m22由m?1k?22,可得k?2?21m?1)?2.所以x1?x2?8m(1?m).又FM?1?m,
所以S?MPQ?2m(1?m).所以△MPQ的面积为23m(1?m)(0?m?1312).
11设f(m)?m(1?m)3,则f'(m)?(1?m)2(1?4m).可知f(m)在区间(0,)单调递增,在区间(,)单
442141276414调递减.所以,当m?368时,f(m)有最大值f()?4.所以,当m?时,△MPQ的面积有最大值
.
5)抛物线y2?2px(p?0)的焦点为F,过F的直线交y轴正半轴于点P,交抛物线于A,B两点,其中点A在第一象限.
(Ⅰ)求证:以线段FA为直径的圆与y轴相切;
?????????????????11(Ⅱ)若FA??1AP,BF??2FA,1?[,],求?2的取值范围.
?242p2 解:(Ⅰ)由已知F(,0),设A(x1,y1),则y1?2px1,
2圆心坐标为(FA212p22x1?p4,y12),圆心到y轴的距离为
2x1?p4, 圆的半径为
??x1?(?)?2x1?p4,
所以,以线段FA为直径的圆与y轴相切.
????????????????(Ⅱ)解法一:设P(0,y0),B(x2,y2),由FA??1AP,BF??2FA,得
(x1?x1?p2p2,y1)??1(?x1,y0?y1),1x??1y?(,(p2y0?x2,?y2)??2(x1?p2,y1), 所以
???1, y1)1 9
p2?x2??2(x1?p2),y2???2y1,由y2???2y1,得y2??2y1.又y1?2px1,y2?2px2, ?x2??2(x1?p2p2),得
p2??2x1??2(x1?222222所以 x2??22x1. 代入整理得x1??1?2p2?2p2p2),
p2(1??2)?x1?2(1??2),
, 代入x1????1x1,得
p2?2?p2???1p2?2,所以
1?2?1??1?2,
因为
?[411,],所以?2的取值范围是[,2].
342p2解法二:设A(x1,y1),B(x2,y2),AB:x?my?y?2pmy?p?0,
22,将x?m?yp2代入y2?2px,得
????????????????所以y1y2??p(*),由FA??1AP,BF??2FA,得
2(x1?x1?p22p2,y1)??1(?x1,y0?y1),x1??y1(?1,
p(p2?x2,?y2)??2(x1?p2p2,y1), 所以,
???y1)?0xy??2(x?,2112),y2???2y1, 将y2???2y1代入(*)式,
p2得y1??1?2p2?2, 所以2px1?p2?2,x1?p2?2. 代入x1????1x1,得
1?2?1??1?2. 因为
?[411,],所以?2的取值范围是[,2].
342
解法三(几何法):设抛物线的准线为l:x??p2,准线交x轴于K点,BA的延长线交准线于M点,过P
???作PH?l于H,分别过A、B作AI?l于I,BJ?l于J,设AP?m,则FA??1m,BF??1?2m,
?PF?m(1??1)
1由?APH相似于?MFK得,2pp?PMMF?PM?PF?m(1??1)
由抛物线的定义知,AI?AF??1m,BJ?BF??1?2m 由?MAI相似于?MBJ得, AIBJ??MAMB??1m?1?2m?m?m(1??1)2m(1??1)??1?2m?1?2??1?2?1?2?2?1?2
故设
1?1?2?1?2?2?1?2?2?1?2??2??1?1
?t?[111,],则?1??2t。从面?2??2t?1??2?
1?t42 10
因为
12?1?t?34,所以
43??2?2。
11
相关推荐: