11.(3分)(2017?绵阳)在边长为正整数的△ABC中,AB=AC,且AB边上的中线CD将△ABC的周长分为1:2的两部分,则△ABC面积的最小值为( ) A.B. C. D. 考点:勾 股定理;三角形的面积;三角形三边关系;等腰三角形的性质. 分析:设 这个等腰三角形的腰为x,底为y,分为的两部分边长分别为n和2n,再根据题意列出关于x、n、y的方程组,用n表示出x、y的值,由三角形的三边关系舍去不符合条件的x、y的值,由n是正整数求出△ABC面积的最小值即可. 解答:解 :设这个等腰三角形的腰为x,底为y,分为的两部分边长分别为n和2n,得 或, 解得或, ∵2×<(此时不能构成三角形,舍去) ∴取,其中n是3的倍数 ∴三角形的面积S△=××=n,对于S△=取最小. 2n=2n, 2当n≥0时,S△随着n的增大而增大,故当n=3时,S△=故选:C. 点评:本 题考查的是三角形的面积及三角形的三边关系,根据题意列出关于x、n、y的方程组是解答此题的关键. 12.(3分)(2017?绵阳)如图,AB是半圆O的直径,C是半圆O上一点,OQ⊥BC于点Q,过点B作半圆O的切线,交OQ的延长线于点P,PA交半圆O于R,则下列等式中正确的是( )
A.= B. = C. = D. =
考点:切 线的性质;平行线的判定与性质;三角形中位线定理;垂径定理;相似三角形的判定与性质 专题:探 究型. 分析: (1)连接AQ,易证△OQB∽△OBP,得到,也就有,可得△OAQ∽OPA,从而有∠OAQ=∠APO.易证∠CAP=∠APO,从而有∠CAP=∠OAQ,则有∠CAQ=∠BAP,从而可证△ACQ∽△ABP,可得(2)由△OBP∽△OQB得(3)连接OR,易得(4)由=,,即=2,得到,所以A正确. ,故C不正确. ,由AQ≠OP得,故B不正确. 及AC=2OQ,AB=2OB,OB=OR可得,由AB≠AP得,故D不正确. 解答:解 :(1)连接AQ,如图1, ∵BP与半圆O于点B,AB是半圆O的直径, ∴∠ABP=∠ACB=90°. ∵OQ⊥BC, ∴∠OQB=90°. ∴∠OQB=∠OBP=90°. 又∵∠BOQ=∠POB, ∴△OQB∽△OBP. ∴. ∵OA=OB, ∴. 又∵∠AOQ=∠POA, ∴△OAQ∽△OPA. ∴∠OAQ=∠APO. ∵∠OQB=∠ACB=90°, ∴AC∥OP. ∴∠CAP=∠APO. ∴∠CAP=∠OAQ. ∴∠CAQ=∠BAP. ∵∠ACQ=∠ABP=90°, ∴△ACQ∽△ABP. ∴. 故A正确. (2)如图1, ∵△OBP∽△OQB,
∴∴. . ∵AQ≠OP, ∴. 故C不正确. (3)连接OR,如图2所示. ∵OQ⊥BC, ∴BQ=CQ. ∵AO=BO, ∴OQ=AC. ∵OR=AB. ∴∴∴=,≠. . =2. 故B不正确. (4)如图2, ∵, 且AC=2OQ,AB=2OB,OB=OR, ∴. ∵AB≠AP, ∴. 故D不正确. 故选:A.
点评:本 题考查了切线的性质,相似三角形的判定与性质、平行线的判定与性质、垂径定理、三角形的中位线等知识,综合性较强,有一定的难度. 二、填空题(共6小题,每小题4分,满分24分) 13.(4分)(2017?绵阳)2= ﹣2
.
考点:负 整数指数幂 分析:根 据负整数指数幂的运算法则直接进行计算即可. ﹣2解答: 解:2==. 故答案为:. 点评:本 题主要考查负整数指数幂,幂的负整数指数运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算. 14.(4分)(2017?绵阳)“五一”小长假,以生态休闲为特色的绵阳近郊游倍受青睐.假期三天,我市主要景区景点人气火爆,据市旅游局统计,本次小长假共实现旅游收入5610万
7
元,将这一数据用科学记数法表示为 5.61×10 元. 考点:科 学记数法—表示较大的数 分析: 学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,科要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 解答: :将5610万元用科学记数法表示为:5.61×107. 解7故答案为:5.61×10. n点评: 题考查了科学记数法的表示方法.此科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
相关推荐: