第一范文网 - 专业文章范例文档资料分享平台

【强烈推荐】基于Labview的虚拟滤波器设计_毕业论文

来源:用户分享 时间:2025/10/6 3:03:59 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

四 设计原理

4.1 DAQ采集模块

建立DAO助手

DAQ为:函数→测量IO→DAQmx-数据采集→DAQ助手。

根据用户需用的波形及参数,将用示波器输出所需波形,经DAQ采集数据后在示波器上显示。

4.2 输入模拟信号和噪音模块

4.2.1 输入信号

在设计中需要一个常规的波形,如正弦波、直流波、三角波、锯尺波或方波,并且可设置信号频率、幅值、采样频率、采样点数等参数

4.2.2 噪音

可加入不同类型与大小的噪声,因为在实际过程中噪音是不能已知的,所以在模拟过程中要尝试不同类型的噪音,以便确保设计的滤波器可以对任何噪音都有一定的滤波作用。在我的设计中我选用了高斯白噪音为例进行了研究。

4.3 IIR滤波器

4.3.1 滤波器类型

按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。 低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。

高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。 带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。

带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过

4.3.2逼近准则

巴特沃斯响应(最平坦响应)

巴特沃斯响应能够最大化滤波器的通带平坦度。该响应非常平坦,接近DC信号,然后慢慢衰减至截止频率点为-3dB,最终逼近-20ndBdecade

的衰减率,其中n为滤波器的阶数。巴特沃斯滤波器特别适用于低频应用,其对于维护增益的平坦性来说非常重要。

贝塞尔响应

除了会改变依赖于频率的输入信号的幅度外,滤波器还会为其引入了一个延迟。延迟使得基于频率的相移产生非正弦信号失真。就像巴特沃斯响应利用通带最大化了幅度的平坦度一样,贝塞尔响应最小化了通带的相位非线性。

切贝雪夫响应

在一些应用当中,最为重要的因素是滤波器截断不必要信号的速度。如果你可以接受通带具有一些纹波,就可以得到比巴特沃斯滤波器更快速的衰减。附录A包含了设计多达8阶的具巴特沃斯、贝塞尔和切贝雪夫响应滤波器所需参数的表格。其中两个表格用于切贝雪夫响应∶一个用于0.1dB最大通带纹波;另一个用于1dB最大通带纹波。

4.4 FIR滤波器

4.4.1 窗

1)矩形窗

矩形窗属于时间变量的零次幂窗。矩形窗使用最多,习惯上不加窗就是使信号通过了矩形窗。这种窗的优点是主瓣比较集中,缺点是旁瓣较高,并有负旁瓣,导致变换中带进了高频干扰和泄漏,甚至出现负谱现象。

2) 三角窗

三角窗亦称费杰(Fejer)窗,是幂窗的一次方形式。与矩形窗比较,主瓣宽约等于矩形窗的两倍,但旁瓣小,而且无负旁瓣。

3) 汉宁(Hanning)窗

汉宁窗又称升余弦窗,汉宁窗可以看作是3个矩形时间窗的频谱之和,或者说是 3个 sine(t)型函数之和,而括号中的两项相对于第一个谱窗向左、右各移动了 πT,从而使旁瓣互相抵消,消去高频干扰和漏能。可以看出,汉宁窗主瓣加宽并降低,旁瓣则显著减小,从减小泄漏观点出发,汉宁窗优于矩形窗.但汉宁窗主瓣加宽,相当于分析带宽加宽,频率分辨力下降。

4) 海明(Hamming)窗

海明窗也是余弦窗的一种,又称改进的升余弦窗。海明窗与汉宁窗都是余弦窗,只是加权系数不同。海明窗加权的系数能使旁瓣达到更小。分析表明,海明窗的第一旁瓣衰减为一42dB.海明窗的频谱也是由3个矩形时窗的频谱合成,但其旁瓣衰减速度为20dB(10oct),这比汉宁窗衰减速度慢。海明窗与汉宁窗都是很有用的窗函数。

5) 高斯窗

高斯窗是一种指数窗。高斯窗谱无负的旁瓣,第一旁瓣衰减达一55dB。高斯富谱的主瓣较宽,故而频率分辨力低.高斯窗函数常被用来截断一些非周期信号,如指数衰减信号等。

【强烈推荐】基于Labview的虚拟滤波器设计_毕业论文.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c3pfgo655ha5nrap1rg1l036aw5tvxo00xr8_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top