第一范文网 - 专业文章范例文档资料分享平台

2019人教版 高中数学 选修2-2课本例题习题改编(含答案)

来源:用户分享 时间:2025/11/1 2:49:09 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

2019人教版精品教学资料·高中选修数学

选修2-2课本例题习题改编

1.原题(选修2-2第十一页习题1.1B组第一题)改编 在高台跳水中,t s时运动员相对水面的高度(单位:m)是h(t)??4.9t?6.5t?10则t=2 s时的速度是_______. 解:h?(t)??9.8t?6.5由导数的概念知:t=2 s

时的速度为

2h?(2)??9.8?2?6.5??13.1(m/s)

2.原题(选修

2-2

第十九页习题

1.2B

组第一题)改编记

1331A?cos,B?cos,c?sin?sin,则A,B,C的大小关系是( )

2222A.A?B?C B.A?C?B

C. B?A?C

D. C?B?A

解:cos,cos分别表示sinx在x?1232131133记M(,,时的导数值,sin),N(,sin)

222222根据导数的几何意义A表示sinx在点M处的切线的斜率,B表示sinx在点N处的切线的斜率,C表示直线MN的斜率, 根据正弦的图像可知A>C>B故选B

f(x) = sin(x)32.521.51NM123450.5543210.511.522.53 /3.原题(选修2-2第二十九页练习第一题)改编 如图是导函数y?f(x)的图象,那么函数

y?f(x)在下面哪个区间是减函数

A. (x1,x3) B. (x2,x4) C.(x4,x6) D.(x5,x6) 解:函数的单调递减区间就是其导函数小于零的区间,故选B

4.原题(选修2-2第三十二页习题1.3B组第1题(4))改编 设0?x?sinxa?lnsinx,b?sinxc,?e 试比较a,b,c的大小关系为( )

?2,记

A a?b?c B b?a?c C c?b?a D b?c?a

x解:先证明不等式lnx?x?e x>0

设f(x)?lnx?x,x?0

1?1,1f(x)单调递增,x 因为所以,当0?x?1时,f?(x)??1?0,x1f(x)?lnx?x?f(1)??1?0;当x?1时f?(x)??1?0,f(x)单调递减,

xf?(x)?f(x)?lnx?x?xf(1?)?;当?1x=1时,显然ln1?1,因此lnx?x

设g(x)?x?e,x?0

g?(x)?1?ex 当x?0时g?(x)?0 ?g(x)在(0,+?)单调递减 ?g(x)?g(0)?0

即x?e

x综上:有lnx?x?e,x>0成立

x0?x??2 ?0?sinx?1 ? lnsinx?sinx?esinx 故选A

5.原题(选修2-2第三十七页习题1.4A组第1题)改编 用长为18 m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是_________.

18?12x3??解:设长方体的宽为xm,则长为2xm,高h??4.5?3x(m)?0<x<?.

42??故长方体的体积为V(x)?2x2(4.5?3x)?9x2?6x3(m3)(0<x<). 从而V?(x)?18x?18x?18x(1?x).

令V?(X)?0,解得x=0(舍去)或x=1,因此x=1. 当0<x<1时,V?(X)>0;当1<x<

2323时,V?(X)<0, 2故在x=1处V(x)取得极大值,并且这个极大值就是V(x)的最大值.

3

从而最大体积V=3(m),此时长方体的长为2 m,高为1.5 m.

3

答:当长方体的长为2 m时,宽为1 m,高为1.5 m时,体积最大,最大体积为3 m. 6.原题(选修2-2第四十五页练习第二题)改编 一辆汽车在笔直的公路上变速行驶,设

汽车在时刻t的速度为v(t)=-t+4,(0?t?3t)(t的单位:h, v的单位:km/h)则这辆车行驶的最大位移是______km

2

解:当汽车行驶位移最大时,v(t)=0.又v(t)=-t+4=0且0?t?3,则t=2

2

2116162,故填 ?smax??(?t2?4)dt?(-t3?4t)?003337.原题(选修2-2第五十页习题1.5A组第四题)改编 (e-1?1x?1?x2)dx?________

解:(e-1?1x?1?x2)dx?2?(ex?1?x2)dx?2(ex02

2

110??1?x2dx),而

011?101?xdx表示单位圆x+y=1在第一象限内的部分面积,??1?x2dx?02?4

(e??-11x?1?x2)dx?2(e-1-

???)=2e?2? 故填2e?2?. 4221围成的28.原题(选修2-2第五十三页例2)改编 曲线y?sinx(0?x??)与直线y=封闭图形的面积为( )A.3 B.2-3 C.2-解:由sinx?y=

?? D.3-

331?5?与,所以曲线y?sinx(0?x??)与直线(0?x??)得x?或2661围成的封闭图形的面积25?6s???615??sinxdx??(?)??cosx266?5?66??3=?cos5?????(?cos)??3? 6633故选D

22y??x?2x所围成图y?1?1?x9.原题(选修2-2第五十六页例1)改编 由曲线,

形的面积为____________ 解:联立∴s?1?y?1?1?x2y??x2?2x 得焦点坐标(0,0),(1,1)

1?10(?x2?2x)dx??(1?1?x2)dx

0132221(?x?2x)dx?(?x?x)?0?033

1?(1?011?x)dx?x??1?xdx?1??1?x2dx

0022x?y?1在第一象限内的部分 1?xdx表示单位圆

21012而

??120∴

10?2??1?1

?s??1???23443 故填43 1?xdx=4 ∴

f(x) = 1 1 x?xg(x) = x?x + 2?x1.41.210.8g(x)0.60.4f(x)0.221.510.50.20.511.522.50.40.60.811.21.4

10.原题(选修2-2第七十八页练习3)改编 设P是?ABC内一点,?ABC三边上的高分

lalbl??c?______________;hAhBhC类比到空间,设P是四面体ABCD内一点,四顶点到对面的距离分别是hA、hB、hC、hD,

别为hA、hB、hC,P到三边的距离依次为la、lb、lc,则有

P到这四个面的距离依次是la、lb、lc、ld,则有_________________。 解:用等面积法可得,

laSlSlS??PBC,同理b??PAC,c??PAB 所以 hAS?ABChBS?ABChCS?ABCSSSlalblllll??c??PBC??PAC??PAB?1,类比到空间有a?b?c?d?1

hAhBhChDhAhBhCS?ABCS?ABCS?ABCAhAPlaCB

11.原题(选修2-2第八十二页阅读与思考)改编 如图,点P为斜三棱柱ABC?A1B1C1的

侧棱BB1上一点,PM?BB1交AA1于点M,PN?BB1交CC1于点N. (1) 求证:CC1?MN; (2) 在任意?DEF中有余弦定理:

DE2?DF2?EF2?2DF?EFcos?DFE.

拓展到空间,类比三角形的余弦定理, 写出斜三棱柱的三个侧面面积与其中

两个侧面所成的二面角之间的关系式,并予以证明. 解:(1) 证明:

?CC1//BB1?CC1?PM,CC1?PN,?CC1?平面PMN?CC1?MN;

(2) 在斜三棱柱ABC?A1B1C1中,有SABB1A1?SBCC1B1?SACC1A1?2SBCC1B1?SACC1A1cos?,其中?为平面CC1B1B与平面CC1A1A所成的二面角.

?CC1?平面PMN,?上述的二面角为?MNP,在?PMN中,

222PM2?PN2?MN2?2PN?MNcos?MNP? PM2CC12?PN2CC12?MN2CC12?2(PN?CC1)?(MN?CC1)cos?MNP,

由于SBCC1B?PN?CC1,SACC1A?MN?CC1,SABB1A?PM?BB1

111∴有SABB1A1?SBCC1B1?SACC1A1?2SBCCB?SACCAcos?.

111112.原题(选修2-2第九十六页习题2.3A组第一题)改编 在数列{an}中,

222a1?13an,an?1?,则数列{an}的通项公式为____________ 2an?3解:本题有多种求法,“归纳——猜想——证明”是其中之一

331333 ?,a2?,a3?,a4?,猜想an?n?52678931下面用数学归纳法证明:(1)当n=1时,a1??,猜想成立

1?52a1?ak?1(2)假设当n=k时猜想成立,则

33ak3k?5???3ak?3(k?1)?5?3k?5

3?an?3n?5

当n=k+1时猜想也成立,综合(1)(2),对n?N猜想都成立.故应填

?13.原题(选修2-2第页习题一百一十二页习题3.2A组第4题(4))改编 复数

132012(?i)的共轭复数是22( )

13131313?i??i?i?i22222222A. B. C. D.

?13213331(?i)??i??i?242422 解:2133133131?(?i)?(?i)?(i?)?????122222244

1320121336701323113670?(?i)?((?i))?(?i)?(-1)(i?)???i2222222222

13?i22其共轭复数为,故选B

?

2019人教版 高中数学 选修2-2课本例题习题改编(含答案).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c3q0zp5wltt03ypi6bk157e16g2f50200ov5_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top