第27章小结与复习
1.已知△ABC与△A1B1C1相似,且相似比为1:3,则△ABC与△A1B1C1的面积比为( ) A.1:1 B.1:3 C.1:6 D.1:9
2.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )
A. B. C. D.
3.如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是( )
A. B. C. D.
4.如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为( )
A.5 B.4 C.3 D.2
5.如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP?MD=MA?ME;③2CB2=CP?CM.其中正确的是( )
A.①②③ B.① C.①② D.②③
6.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则
的值是( )
A. B. C. D.
7.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为( )
A.6 B.8 C.10 D.12
8.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2( )
A.若2AD>AB,则3S1>2S2 C.若2AD<AB,则3S1>2S2
B.若2AD>AB,则3S1<2S2 D.若2AD<AB,则3S1<2S2
9.如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,
延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是( )
A.CE= B.EF= C.cos∠CEP= D.HF=EF?CF
2
10.如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形: .
11.如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为 .
12.如图,在?ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF=1,则S△ADF的值为 .
13.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步面见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为 步.
14.如图,点P是⊙O的直径AB延长线上一点,且AB=4,点M为与A,B重合),射线PM与⊙O交于点N(不与M重合)
(1)当M在什么位置时,△MAB的面积最大,并求岀这个最大值; (2)求证:△PAN∽△PMB.
上一个动点(不
15.如图,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作EC⊥OB,交⊙O于点C,作直径CD,过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.
(1)求证:AC平分∠FAB; (2)求证:BC=CE?CP; (3)当AB=4
且
时,求劣弧
的长度.
2
相关推荐: