ÁÈֳòÅìÁÈÁÐÓÕÖ¶²§Ðú¼¢Ó£ºÔÈÏ¿¹µî̾½ÐÐò¸»Ô¡Õɱ᳧ºÁº®Ñá¶ÇÅøÕùÇ¥À°»ÙÏÖ¸ËÀ´ÒÒ±¾³Ë×ÔÂÓ¹¤°ý×£¶øÖõÕ¹ÌòÇèµÉÓÑÒíÕ¥»½ÉゥÕÃÃ¥ÐͽÈèÀ»ÃлÙѱ;¼ÖËùËɳûËá¿¿ÇòÖÖÏÞ²´ÇðЬ´Ö½ÉÎáÃÍ´¢ÏÂËӾĻ´Èø¿©ËÚÅãб´ÑÌÌÎÕÑ«´Þ·¡¸÷¸×³ÙÓ·»áÔŹóÍ£ÓãÓ¦Ò½¾Ø¼ÀȬ̹»Ü°ØÍÌÓ«ÅùÐ×ÓÉÇ¿¸óÐì¹ÅήµõÆÚ»æ°éÅ£À¼¿Ý¶»µé¶ú¹¼Àø×÷´å¼õ°ôÒóÂïÔ¹ÑëÕ¦±ò°¾ÖÖÌÓÊ̸îÔðÃÛȽɻÂܰÑÀÏ·¾¾óÕݱ¹ÕÔá°Ó°é¹ÕʤÖÙ¾¼ÉÓ¶ÞÇÈÒÏÓ˿ǶêÅðÐåÈ÷Ìù»©»á¿ÊÒÄÅØÖ¨¹Æ¸ÂÇîËÈÏÖ¶ÙÈË±í¹·×ÇÇ㺧¿õ°ÈÉÐÔëÁ¨ÅÉ˵깼µãÕà³ùÀ¤¶¼ÇÒÃÓµÖáлμÊöÒÔõ·é³µ¸¼ÆÔµãШ×־ܸ÷Ç¡×ÍÃË×õÄð²ÖÄÕ±ÒÒķĽ´ÖذºÒå»°Õ¢¶·ÕöÔà»Ý¹¸ÏãÃÖ·ºµÚ1Õ Ð÷ ÂÛ µÚ1Õ Ð÷ ÂÛ Ï°Ìâ
Ò»¡¢ÎÊ´ðÌâ
1. ʲôÊÇÊý¾Ý½á¹¹£¿
2. ËÄÀà»ù±¾Êý¾Ý½á¹¹µÄÃû³ÆÓ뺬Òå¡£ 3. Ëã·¨µÄ¶¨ÒåÓëÌØÐÔ¡£ 4. Ëã·¨µÄʱ¼ä¸´ÔÓ¶È¡£ 5. Êý¾ÝÀàÐ͵ĸÅÄî¡£
6. ÏßÐԽṹÓë·ÇÏßÐԽṹµÄ²î±ð¡£ 7. ÃæÏò¶ÔÏó³ÌÐòÉè¼ÆÓïÑÔµÄÌØµã¡£
8. ÔÚÃæÏò¶ÔÏó³ÌÐòÉè¼ÆÖУ¬ÀàµÄ×÷ÓÃÊÇʲô£¿ 9. ²ÎÊý´«µÝµÄÖ÷Òª·½Ê½¼°Ìص㡣 10. ³éÏóÊý¾ÝÀàÐ͵ĸÅÄî¡£
a
¶þ¡¢ÅжÏÌâ
1. ÏßÐԽṹֻÄÜÓÃ˳Ðò½á¹¹À´´æ·Å£¬·ÇÏßÐԽṹֻÄÜÓ÷Ç˳Ðò½á¹¹À´´æ·Å¡£ 2. Ëã·¨¾ÍÊdzÌÐò¡£
3. Ôڸ߼¶ÓïÑÔ£¨ÈçC¡¢»ò PASCAL£©ÖУ¬Ö¸ÕëÀàÐÍÊÇÔ×ÓÀàÐÍ¡£
Èý¡¢¼ÆËãÏÂÁгÌÐò¶ÎÖÐX=X+1µÄÓï¾äƵ¶È
for(i=1;i<=n;i++) for(j=1;j<=i;j++)
for(k=1;k<=j;k++) x=x+1;
[Ìáʾ]£º
i=1ʱ£º 1 = (1+1)¡Á1/2 = (1+12)/2 i=2ʱ£º 1+2 = (1+2)¡Á2/2 = (2+22)/2 i=3ʱ£º 1+2+3 = (1+3)¡Á3/2 = (3+32)/2 ¡
i=nʱ£º 1+2+3+¡¡+n = (1+n)¡Án/2 = (n+n2)/2
a
f(n) = [ (1+2+3+¡¡+n) + (12 + 22 + 32 + ¡¡ + n2 ) ] / 2 =[ (1+n)n/2 + n(n+1)(2n+1)/6 ] / 2 =n(n+1)(n+2)/6 =n3/6+n2/2+n/3
Çø·ÖÓï¾äƵ¶ÈºÍËã·¨¸´ÔÓ¶È£º O(f(n)) = O(n3) ËÄ
¡¢
ÊÔ
±à
д
Ëã
·¨
Çó
Ò»
Ôª
¶à
Ïî
ʽ
Pn(x)=a0+a1x+a2x2+a3x3+¡anxnµÄÖµPn(x0)£¬²¢È·¶¨Ëã·¨ÖеÄÿһÓï¾äµÄÖ´ÐдÎÊýºÍÕû¸öËã·¨µÄʱ¼ä¸´ÔÓ¶È£¬ÒªÇóʱ¼ä¸´ÔӶȾ¡¿ÉÄܵÄС£¬¹æ¶¨Ëã·¨Öв»ÄÜʹÓÃÇóÃݺ¯Êý¡£×¢Ò⣺±¾ÌâÖеÄÊäÈëai(i=0,1,¡,n), xºÍn£¬Êä³öΪPn(x0).ͨ³£Ëã·¨µÄÊäÈëºÍÊä³ö¿É²ÉÓÃÏÂÁÐÁ½ÖÖ·½Ê½Ö®Ò»£º
£¨1£© ͨ¹ý²ÎÊý±íÖеIJÎÊýÏÔʽ´«µÝ£» £¨2£© ͨ¹ýÈ«¾Ö±äÁ¿Òþʽ´«µÝ¡£
a
ÊÔÌÖÂÛÕâÁ½ÖÖ·½·¨µÄÓÅȱµã£¬²¢ÔÚ±¾ÌâËã·¨ÖÐÒÔÄãÈÏΪ½ÏºÃµÄÒ»ÖÖ·½Ê½ÊµÏÖÊäÈëºÍÊä³ö¡£
[Ìáʾ]£ºfloat PolyValue(float a[ ], float x, int n) {¡¡}
ºËÐÄÓï¾ä£º
p=1; (xµÄÁã´ÎÃÝ) s=0;
i´Ó0µ½nÑ»· s=s+a[i]*p; p=p*x;
»ò£º
p=x; (xµÄÒ»´ÎÃÝ) s=a[0]; i´Ó1µ½nÑ»· s=s+a[i]*p; p=p*x;
a
Ïà¹ØÍÆ¼ö£º