x2y28162??1得x2?|CD|?1?k?把l2:y?kx代入C1:,所以,
21641?4k21?4k1m2|AB|16k2?m2?41m2?4?所以?? ??4?2222|CD|21?m1?4k21?4k1?4()22m1m4116?4?4?4??, 2113223m?m?1(2?)2?24m当m?2,k??62,?取最小值. 433ca2?14、解:(1)由题,e?,解得a?2.................2分 ??2aa①当y1?0时,x1??2 ,直线x??2,∴x?4,代入椭圆方程得到y?0, ∴切线PA的方程是x??2.
2?x2?4y2?4?0?1?x2②当y1?0时,联立?,消y,得到x?4??1?x??4?0,
?y14y1??x1x?4y1y?4?02?x12?22x14即?1?.........................5分 ?x??x??4?0,2?22y1y1?4y1???4x12?44x12x12??1x12x12?所以??4?4?4?2??2?1??4?4?2?4?4?2?
y1y1??y1y1y1???y1?y14?4?4y1?4x121616??2?16?2??2?16??0
y1y1y1y122x1x?y1y?1........................8分 4xxxx(2)根据(1)可得切线PA的方程为1?y1y?1,切线PB 的方程为2?y1y?1,
44∴切线PA的方程为
?x1m?y1n?1?mx?4?ny?1.∴?,所以直线AB方程为.......................9分
xm4?2?yn?12??4?mx?ny?1?m2?22m4?∴?4,消y得到?1?2??x?2?x?2?4?0,
nn22?4n???x?4y?4?0
164m2?2?2?162??m?n2∴AB?1?k?............................11分 ?1?????n2am?4n?1?24n又∵原点O到直线AB的距离d?1m2?n422,
∴S?OAB164m2?2?2?162111?m?n ??AB?d??1?????n?22224nm??m1?2?n224n444n2?m2?4............................................13分 ?224n?m又∵P?m,n?为圆x2?y2?16上任意一点,∴m?n?16.
22∴S?OAB43n2?124t42,令,则在?23,??上单调?S??t?3n?12?23?OAB223n?16t?4t?4?t?递减,所以S?OAB?3...................................15分 219.5、解:(1)因为点P(22213239b,),所以kOP?3,又因为AF?OP,??3??1, 1313c∴c?3b,∴a?4b.
41241221323913?13?13?13?1, ,)在椭圆上,∴13又点P(?1313a2b24b2b213b2x2?y2?1. 解之得a?4,b?1,故椭圆方程为422(2)①当直线l的斜率不存在时,方程为:x?1,此时d?1. ②当直线l的斜率存在时,设直线l的方程为:y?kx?m(m??1)
联立椭圆方程得:(4k2?1)x2?8kmx?4(m2?1)?0,设点M(x1,y1),N(x2,y2),
?8km?x?x???124k2?122由韦达定理:?,??0?4k?m?1?0(1) 2?x1x2?4(m2?1)?4k?1?11?8km4(m2?1)由?, ?2?(x1?x2)?2x1x2?2?22x1x24k?14k?11?m(?0)(2) m42把(2)式代入(1)式得:m2?或0?m?1,
3即:km?1?m2?k?椭圆右顶点D(2,0)到直线l的距离d?2k?mk?12?2?mm?1?m2?12m2?m2m?m?142
?m4?4m2?43(m2?1), ?1?4422m?m?1m?m?1令m2?1?t?(?1,0)?(,??),
13则d?1?3t3?1??[0,1)?(1,2),
1t2?t?1t??1t由①②可知:d?[0,2). 6、
7、
yDBPCQxMOA
解:(Ⅰ)圆C2的方程为(x?2)2?(y?1)2?1,此圆与x 轴相切,切点为(2,0) 所以c?2 ,即a2?b2?2 ,且F2(2,0) ,F1(?2,0) ……………………2分
又|QF1|?|QF2|?3?1?2a. ……………………4分
222所以a?2 ,b?a?c?2
x2y2??1. ……………………6分 所以椭圆C1的方程为42
相关推荐: