?OA:OB?2:3,设OA?2m,BO?3m, QAC?BD, ??BAO?90?,
?OB2?AB2?OA2, ?9m2?5?4m2, ?m??1, Qm?0, ?m?1, ?AC?2OA?4.
故选:D.
8.如图,在?ABC中,D是BC边的中点,AE是?BAC的角平分线,AE?CE于点E,连接DE.若AB?7,DE?1,则AC的长度是( )
A.5
B.4
C.3
D.2
【解答】解:延长CE,交AB于点F. QAE平分?BAC,AE?CE, ??EAF??EAC,?AEF??AEC,
??AEF??EAC?在?EAF与?EAC中,?AE?AE??AEF??AEC?,
??EAF??EAC(ASA), ?AF?AC,EF?EC,
又QD是BC中点, ?BD?CD,
?DE是?BCF的中位线, ?BF?2DE?2.
?AC?AF?AB?BF?7?2?5;
故选:A.
9
9.如图,在YABCD中,?B?60?,AB?4,对角线AC?AB,则YABCD的面积为( )
A.63
B.12
C.123
D.163
【解答】解:Q在YABCD中,?B?60?,AB?4,对角线AC?AB, ?AC?AB?tan?B?43,
?YABCD的面积为ABgAC?4?43?163,
故选:D.
10.如图,D是?ABC内一点,BD?CD,E、F、G、H分别是边AB、BD、CD、AC的中点.若AD?10,BD?8,CD?6,则四边形EFGH的周长是( )
A.24
B.20
C.12
D.10
【解答】解:QBD?CD,BD?8,CD?6,
?BC?BD2?CD2?82?62?10,
QE、F、G、H分别是AB、AC、CD、BD的中点, ?EH?FG?11BC,EF?GH?AD, 22?四边形EFGH的周长?EH?GH?FG?EF?AD?BC,
又QAD?10,
10
?四边形EFGH的周长?10?10?20,
故选:B.
二.填空题(共8小题)
11.已知直线a//b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,则点P到b的距离是 3 .
【解答】解:Q直线a//b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,
?点P到b的距离是5?2?3,
故答案为:3.
12.如图,平行四边形ABCD中,AB?3cm,BC?5cm;,BE平分?ABC,交AD于点E,交CD延长线于点F,则DE?DF的长度为 4cm .
【解答】解:Q平行四边形ABCD, ?AD//BC, ??AEB??CBF,
QBE平分?ABC, ??ABF??CBF,
??AEB??ABF, ?AB?AE,
同理可得:BC?CF, QAB?3cm,BC?5cm, ?AE?3cm.CF?5cm,
?DE?5?3?2cm,DF?5?3?2cm, ?DE?DF?2?2?4cm,
故答案为:4cm.
13.如图,在YABCD中,对角线AC与BD相交于点O,AC?CD,OE//BC交CD于E,若OC?4,CE?3,则BC的长是 10 .
11
【解答】解:Q四边形ABCD是平行四边形, ?OA?OC,AD//BC, QOE//BC, ?OE//AD,
?OE是?ACD的中位线, QCE?3cm,
?DC?2OE?2?3?6. QCO?4, ?AC?8, QAC?CD,
?AD?AC2?CD2?62?82?10,
?BC?AD?10,
故答案为:10.
14.如图,YABCD的对角线相交于点O,且AD?CD,过点O作OM?AC,交AD于点M.若AB?3,?CDM的周长为9,则BC? 6 .
【解答】解:QABCD是平行四边形, ?OA?OC,AB?CD,AD?BC, QOM?AC, ?AM?MC.
??CDM的周长?AD?CD?9, QAB?CD?3, ?BC?CD?6,
故答案为6.
12
相关推荐: