¡¶º¯Êý¡·ÖÜÄ©Á·Ï°
Ò»¡¢Ñ¡ÔñÌâ(±¾´óÌâ¹²12СÌ⣬ÿСÌâ4·Ö£¬¹²48·Ö)
1.ÒÑÖª¼¯ºÏA£½{x|x£¼3}£¬B£½{x|2x-1£¾1}£¬ÔòA¡ÉB£½ ( ) A.{x|x£¾1} B.{x|x£¼3} C.{x|1£¼x£¼3} D. ?
8.º¯Êý
µÄµÝ¼õÇø¼äÊÇ£¨ £©
A£®(£3£¬£1) B£®(£¡Þ£¬£1) C£®(£¡Þ£¬£3) D£®(£1£¬£¡Þ) 9.Èôº¯Êýf(x)£½
ÊÇÆæº¯Êý£¬ÔòmµÄÖµÊÇ£¨ £©
2¡¢ÒÑÖªº¯Êýf(x)µÄ¶¨ÒåÓòΪ[£1£¬5]£¬ÔÚÍ¬Ò»×ø±êϵÏ£¬º¯Êýy£½f(x)µÄͼÏñÓëÖ±Ïßx£½1µÄ½»µã¸öÊýΪ( )£®
A£®0¸ö B£®1¸ö C£®2¸ö D£®0¸ö»ò1¸ö¾ùÓпÉÄÜ 23É躯Êýf(x)????1?x£¬ x¡Ü1£¬Ôò?2f??x?x?2£¬x?1£¬?1?(2)?µÄֵΪ£¨ £© ?f?A£®
1516
B£®?2716
C£®
89
D£®18
4£®ÅжÏÏÂÁи÷×éÖеÄÁ½¸öº¯ÊýÊÇͬһº¯ÊýµÄΪ£¨ £©
£¨1£©f(x)?x2-9x?3£¬g(t)?t?3(t?-3)£»
£¨2£©f(x)?x?1x?1£¬g(x)?(x?1)(x?1)£»
£¨3£©f(x)?x£¬g(x)?x2£»
£¨4£©f(x)?x£¬g(x)?3x3£® A.£¨1£©£¬£¨4£©
B. £¨2£©£¬£¨3£© C. £¨1£© D. £¨3£©
5.º¯Êýf(x)£½lnx£1
xµÄÁãµãËùÔÚµÄÇø¼äÊÇ ( )
A.(0,1) B.(1£¬e) C.(e,3) D.(3£¬£«¡Þ) 6.ÒÑÖªf£«1)£½x£«1£¬Ôòf(x)µÄ½âÎöʽΪ£¨ £©
A£®x
2
B£®x2
£«1(x¡Ý1) C£®x2
£2x£«2(x¡Ý1) D£®x2
£2x(x¡Ý1)
7£®ÉèA=?x|0?x?2?£¬B=?y|1?y?2?£¬ÏÂÁÐͼÐαíʾ¼¯ºÏAµ½¼¯ºÏBµÄº¯ÊýͼÐεÄÊÇ( )
A£®0 B£®
C£®1 D£®2
10.ÒÑÖªf(x)£½??£¨3a?1£©x?4a£¬x<1ÊÇRÉϵļõº¯Êý£¬ÄÇôaµÄȡֵ·¶Î§ÊÇ ?log ( )
ax£¬x¡Ý1.A.(0,1) B.(0£¬13) C.[17£¬13) D.[1
7
£¬1)
11.º¯Êýf(x)????2x?x2,0?x?3??6x,?2?x?0µÄÖµÓòÊÇ£¨ ?x2£©
A. R B. [1,??) C. [?8,1] D. [?9,1]
12.¶¨ÒåÔÚRµÄżº¯Êýf(x)ÔÚ[0£¬£«¡Þ)Éϵ¥µ÷µÝ¼õ£¬ÇÒf(11
2)£½0£¬ÔòÂú×ãf(log4
x)£¼0µÄxµÄ¼¯ºÏΪ( A.(£¡Þ£¬12)¡È(2£¬£«¡Þ) B.(12£¬1)¡È(1,2) C.(11
2£¬1)¡È(2£¬£«¡Þ) D.(0£¬2
)¡È(2£¬£«¡Þ)
¶þ¡¢Ìî¿ÕÌâ(±¾´óÌâ¹²4СÌ⣬ÿСÌâ4·Ö£¬¹²16·Ö)
13. º¯Êýf(x)?3x21?x?3x?1µÄ¶¨ÒåÓòÊÇ ______ . 14¡¢Èôa?0.53,b?30.5,c?log30.5£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÊÇ
15¡¢º¯Êýy??m2?m?1?xm2?2m?3ÊÇÃݺ¯ÊýÇÒÔÚ(0,??)Éϵ¥µ÷µÝ¼õ£¬ÔòʵÊýmµÄֵΪ .
116. Èô(a?1)?12?(3?2a)?2£¬ÔòaµÄȡֵ·¶Î§ÊÇ________£®
Èý¡¢½â´ðÌâ(¹²5¸ö´óÌ⣬17,18¸÷10·Ö£¬19,20,21¸÷12·Ö£¬¹²56·Ö)
17¡¢ÇóÏÂÁбí´ïʽµÄÖµ 23?1?11122£¨1£©
(a?b)?a?b36a?b5;£¨a>0,b>0£© £¨2£©12lg3249-43lg8+lg245.
)
18¡¢É輯ºÏA?{x|0?x?a?3},B?{x|x?0»òx?3}£¬·Ö±ðÇóÂú×ãÏÂÁÐÌõ¼þµÄʵÊýaµÄȡֵ·¶Î§£º
(1)A?B?? £» (2)A?B?B.
19£® ÒÑÖª¶þ´Îº¯Êýf(x)Âú×ãf(x?1)?f(x)?2xÇÒf(0)?1£® (1)Çóf(x)µÄ½âÎöʽ£»
(2) µ±x?[?1,1]ʱ£¬²»µÈʽ£ºf(x)?2x?mºã³ÉÁ¢£¬ÇóʵÊýmµÄ·¶Î§£®
20£®Æû³µºÍ×ÔÐгµ·Ö±ð´ÓAµØºÍCµØÍ¬Ê±¿ª³ö£¬ÈçÏÂͼ£¬¸÷ÑØ¼ýÍ··½Ïò£¨Á½·½Ïò´¹Ö±£©ÔÈËÙǰ½ø£¬Æû³µ
ºÍ×ÔÐгµµÄËÙ¶È·Ö±ðÊÇ10Ã×/ÃëºÍ5Ã×/Ã룬ÒÑÖªAC?100Ã×.£¨Æû³µ¿ªµ½CµØ¼´Í£Ö¹£©
£¨1£©¾¹ýtÃëºó£¬Æû³µµ½´ïB´¦£¬×ÔÐгµµ½´ïD´¦£¬ÉèB,D¼ä¾àÀëΪy£¬ÊÔд³öy¹ØÓÚtµÄº¯Êý¹ØÏµÊ½£¬²¢ÇóÆä¶¨ÒåÓò.
£¨2£©¾¹ý¶àÉÙʱ¼äºó£¬Æû³µºÍ×ÔÐгµÖ®¼äµÄ¾àÀë×î¶Ì£¿×î¶Ì¾àÀëÊǶàÉÙ£¿
21.ÒÑÖªº¯Êýf(x)?ax?b1?x2ÊǶ¨ÒåÔÚ(-1,1)ÉÏµÄÆæº¯Êý£¬ÇÒf(12)?25. (1)Çóº¯Êýf(x)µÄ½âÎöʽ£»
(2)ÅжϺ¯Êýf(x)ÔÚ(-1,1)Éϵĵ¥µ÷ÐÔ²¢Óö¨ÒåÖ¤Ã÷£» (3)½â¹ØÓÚxµÄ²»µÈʽf(x-1)+f(x2)<0.
¡¶º¯Êý¡·ÖÜÄ©Á·Ï°´ð°¸
1-5CBAAB 6-10 CDADC 11-12 CD
13¡¢??-1,1?? 14¡¢ b?a?c 15¡¢ 2 16¡¢(2,3?3?32)
17¡¢£¨1£©Ôʽ=a?11113b2?a2b3?a?1?1?1132615?b2?153?6?a0?b0?1.
a6b6£¨2£©Ôʽ=112£¨lg32-lg49£©-43lg812+2lg245
=1 (5lg2-2lg7)-423¡Á312lg2+2 (2lg7+lg5) =52lg2-lg7-2lg2+lg7+1lg5=1lg2+1222lg5
=1lg(2¡Á5)= 1122lg10=2.
18. ½â£º¡ßA?{x|0?x?a?3} ¡àA?{x|a?x?a?3}
£¨1£©µ±A?B??ʱ£¬ÓÐ??a?0£¬½âµÃa?0 ¡¡¡¡5·Ö?a?3?3
£¨2£©µ±A?B?Bʱ£¬ÓÐA?B£¬ËùÒÔa?3»òa?3?0£¬
½âµÃa?3»òa??3 ¡¡¡¡10·Ö
19¡¢½â£º£¨1£©Éèf(x)=ax2+bx+c(a?0)£¬ÓÉÌâÒâ¿ÉÖª£º
a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x£»c=1
?a=1ÕûÀíµÃ£º2ax+a+b=2x???b=-1?f(x)=x2-x+1 ¡¡¡¡5·Ö??c=1£¨2£©µ±x?[?1,1]ʱ£¬f(x)?2x?mºã³ÉÁ¢¼´£ºx2?3x?1?mºã³ÉÁ¢£»
Áîg(x)?x2?3x?1?(x?3)22?54,x?[?1,1] Ôòg(x)min?g(1)??1 ¡àm??1 ¡¡¡¡10·Ö
20¡¢½â£º£¨1£©¾¹ýtÃëºó£¬Æû³µµ½´ïB´¦¡¢×ÔÐгµµ½´ïD´¦£¬Ôò
BD2?BC2?CD2?(100?10t)2?(5t)2
?125(t2?16t?80)?125[(t?8)2?16]
ËùÒÔy?BD?125(t2?16t?80)?125[(t?8)2?16] ¶¨ÒåÓòΪ[0,10] ¡¡¡¡6·Ö
£¨2£©Qy?125[(t?8)2?16]£¬t?[0,10] ¡àµ±t?8ʱ£¬ymin?125?16?205 ´ð£º¾¹ý8Ãëºó£¬Æû³µºÍ×ÔÐгµÖ®¼äµÄ¾àÀë×î¶Ì£¬×î¶Ì¾àÀëÊÇ205Ã×. ¡12·Ö
?f(0)?021.½â:(1)ÓÉÌâ¿ÉÖª£º???a??12??1 ¡àf(x)?x2 ¡¡¡¡2·Ö ?f(2)?5?b?01?x(2)º¯Êýf(x)ÔÚ(?1,1)Éϵ¥µ÷µÝÔö£¬ Ö¤Ã÷:Áî?1?x1?x2?1 ¡àf(x1)?f(x1?x2?x2(x1?x2)(1?x1x2)2)?x11?x2?x22 12(1?1)(1?x2)¡ß?1?x0,1?x221?x2?1 ¡àx1?x2?0 1?x1x2?1?0,1?x2?0
¡àf(x1)?f(x2)?0 ¼´ f(x1)?f(x2) ¡àº¯Êýf(x)ÔÚ(?1,1)Éϵ¥µ÷µÝÔö ¡7·Ö (3)ÓÉÒÑÖª:f(x2)??f(x?1)?f(1?x) ÓÉ(2)Öªf(x)ÔÚ(?1,1)Éϵ¥µ÷µÝÔö
?¡à?x2?1-x??1?x2?1?0?x??1?5 ¡à½â¼¯Îª{x|0?x??1?5} ¡¡¡12·Ö ???1?1?x?122
Ïà¹ØÍÆ¼ö£º