a<0时,抛物线开口向下
b与对称轴有关:对称轴为x=?b 2a(0,c) c表示抛物线与y轴的交点坐标:
3、二次函数与一元二次方程的关系
一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标。
因此一元二次方程中的??b?4ac,在二次函数中表示图像与x轴是否有交点。 当?>0时,图像与x轴有两个交点; 当?=0时,图像与x轴有一个交点; 当?<0时,图像与x轴没有交点。
2
知识点十 中考二次函数压轴题常考公式(必记必会,理解记忆)
1、两点间距离公式(当遇到没有思路的题时,可用此方法拓展思路,以寻求解题方法) y 如图:点A坐标为(x1,y1)点B坐标为(x2,y2) 则AB间的距离,即线段AB的长度为?x1?x2?2??y1?y2?2 A
0 x B
2,二次函数图象的平移
k?; ① 将抛物线解析式转化成顶点式y?a?x?h??k,确定其顶点坐标?h,2
k?处,具体平移方法如下: ② 保持抛物线y?ax2的形状不变,将其顶点平移到?h,
9
向上(k>0)【或向下(k<0)】平移|k|个单位y=ax2y=ax2+k向右(h>0)【或左(h<0)】平移|k|个单位向右(h>0)【或左(h<0)】平移 |k|个单位向上(k>0)【或下(k<0)】平移|k|个单位向右(h>0)【或左(h<0)】平移|k|个单位y=a(x-h)2向上(k>0)【或下(k<0)】平移|k|个单位y=a(x-h)2+k
③平移规律
在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.
函数平移图像大致位置规律(中考试题中,只占3分,但掌握这个知识点,对提高答题速度有
很大帮助,可以大大节省做题的时间)
特别记忆--同左上加 异右下减 (必须理解记忆)
说明① 函数中ab值同号,图像顶点在y轴左侧同左,a b值异号,图像顶点必在Y轴右侧异右 ②向左向上移动为加左上加,向右向下移动为减右下减
3、直线斜率:
y2?y1 b为直线在y轴上的截距4、直线方程:
k?tan??x2?x14、①两点 由直线上两点确定的直线的两点式方程,简称两式:
y?y1?kx?b?(ta?n)x?b?y2?y1x(x?x1) 此公式有多种变形 牢记 x2?x1 ②点斜 y?y1?kx(x?x1)
③斜截 直线的斜截式方程,简称斜截式: y=kx+b(k≠0)
④截距 由直线在x轴和y轴上的截距确定的直线的截距式方程,简称截距式:
xy??1 ab牢记 口诀 ---
两点斜截距--两点 点斜 斜截 截距
5、设两条直线分别为,l1:y?k1x?b1 l2:y?k2x?b2 若l1//l2,则有l1//l2?k1?k2 10
且b1?b2。 若l?l?k?k??1
1212
6、点P(x0,y0)到直线y=kx+b(即:kx-y+b=0) 的距离: d?
kx0?y0?bk?(?1)22?kx0?y0?bk?12
7、抛物线y?ax2?bx?c中, a b c,的作用
(1)a决定开口方向及开口大小,这与y?ax2中的a完全一样.
(2)b和a共同决定抛物线对称轴的位置.由于抛物线y?ax2?bx?c的对称轴是直线
x??③
bb,故:①b?0时,对称轴为y轴;②?0(即a、b同号)时,对称轴在y轴左侧;2aab?0(即a、b异号)时,对称轴在y轴右侧. 口诀 --- 同左 异右 a (3)c的大小决定抛物线y?ax2?bx?c与y轴交点的位置.
当x?0时,y?c,∴抛物线y?ax2?bx?c与y轴有且只有一个交点(0,c): ①c?0,抛物线经过原点; ②c?0,与y轴交于正半轴; ③c?0,与y轴交于负半轴.
以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y轴右侧,则
b?0. a
十一,中考点击
考点分析:
11
内容 1、函数的概念和平面直角坐标系中某些点的坐标特点 2、自变量与函数之间的变化关系及图像的识别,理解图像与变量的关系 3、一次函数的概念和图像 4、一次函数的增减性、象限分布情况,会作图 5、反比例函数的概念、图像特征,以及在实际生活中的应用 6、二次函数的概念和性质,在实际情景中理解二次函数的意义,会利用二次函数刻画实际问题中变量之间的关系并能解决实际生活问题 要求 Ⅰ Ⅰ Ⅰ Ⅱ Ⅱ Ⅱ
命题预测:函数是数形结合的重要体现,是每年中考的必考内容,函数的概念主要用选择、填空的形式考查自变量的取值范围,及自变量与因变量的变化图像、平面直角坐标系等,一般占2%左右.一次函数与一次方程有紧密地联系,是中考必考内容,一般以填空、选择、解答题及综合题的形式考查,占5%左右.反比例函数的图像和性质的考查常以客观题形式出现,要关注反比例函数与实际问题的联系,突出应用价值,3—6分;二次函数是初中数学的一个十分重要的内容,是中考的热点,多以压轴题出现在试卷中.要求:能通过对实际问题情景分析确定二次函数的表达式,并体会二次函数的意义;会用描点法画二次函数图像,能丛图像上分析二次函数的性质;会根据公式确定图像的顶点、开口方向和对称轴,并能解决实际问题.会求一元二次方程的近似值.
分析近年中考,尤其是课改实验区的试题,预计2009年除了继续考查自变量的取值范围及自变量与因变量之间的变化图像,一次函数的图像和性质,在实际问题中考查对反比例函数的概念及性质的理解.同时将注重考查二次函数,特别是二次函数的在实际生活中应用.
十二,初中数学助记口诀(函数部分)
特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。
对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。
自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍, 同左上加 异右下减
一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;
12
相关推荐: