第一范文网 - 专业文章范例文档资料分享平台

中考数学知识点复习 总复习资料大全(精华版)

来源:用户分享 时间:2025/8/20 4:42:50 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

⑷对角线的纽带作用:

相等且互相平分 相等 互相平分 矩形

垂直

3.对称图形

四边形 平行四边形 相等且互相垂直 相等 菱形 正方形

垂直 互相垂直平分 互相垂直平分且相等 ⑴轴对称(定义及性质);⑵中心对称(定义及性质) 4.有关定理:

①平行线等分线段定理及其推论1、2 ②三角形、梯形的中位线定理 ③平行线间的距离处处相等。(如,找下图中面积相等的三角形) 5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。 6.作图:任意等分线段。 四、 应用举例(略)

第五章 方程(组)

★重点★一元一次、一元二次方程,二元一次方程组的解法;方程的有关应用题(特别是行程、工程问题) ☆ 内容提要☆ 一、 基本概念 1.方程、方程的解(根)、方程组的解、解方程(组) 2. 分类:

一次方程

整式方程 二次方程 高次方程 有理方程 方程 分式方程

无理方程

二、 解方程的依据—等式性质 1.a=b←→a+c=b+c

2.a=b←→ac=bc (c≠0) 三、 解法

1.一元一次方程的解法:去分母→去括号→移项→合并同类项→ 系数化成1→解。 2. 元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法 ②加减法

四、

一元二次方程

21.定义及一般形式:ax?bx?c?0(a?0)

2.解法:⑴直接开平方法(注意特征) ⑵配方法(注意步骤—推倒求根公式)

6

⑶公式法:x1,2?b?b2?4ac2?(b?4ac?0)

2a2⑷因式分解法(特征:左边=0) 3.根的判别式:??b?4ac

bc,x1?x2? aa2逆定理:若x1?x2?m,x1?x2?n,则以x1,x2为根的一元二次方程是:x?mx?n?0。

2225.常用等式:x1?x2?(x1?x2)?2x1x2

4.根与系数顶的关系:x1?x2?? (x1?x2)?(x1?x2)?4x1x2 五、 可化为一元二次方程的方程 1.分式方程 ⑴定义

去分母 ⑵基本思想: 分式方程 整式方程

⑶基本解法:①去分母法②换元法(如,

223x?62x?2??7) x?1x?2⑷验根及方法

六、 列方程(组)解应用题 ㈠概述

列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:

⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。 ⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。

⑶用含未知数的代数式表示相关的量。

⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。 ⑸解方程及检验。 ⑹答案。

综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。 ㈡常用的相等关系 1. 行程问题(匀速运动) 基本关系:s=vt

C A ⑴相遇问题(同时出发): B 相遇处 ←乙 甲→

s甲+s乙=sAB;t甲?t乙 ⑵追及问题(同时出发):

s甲?sAC?s乙;t甲(AB)?t乙(CB)

若甲出发t小时后,乙才出发,而后s甲?s乙;t甲?t?t乙 ⑶水中航行:

A 甲→ (甲)→ A 乙→

B 乙→ (相遇处)

B (相遇处)

在B处追上甲,则

C v顺?船速?水速;v逆?船速?水速

2. 配料问题:溶质=溶液×浓度

溶液=溶质+溶剂

n?13.增长率问题:an?a1(1?r)

4.工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位“1”)。 5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。

7

㈢注意语言与解析式的互化 如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、……

又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。

㈣注意从语言叙述中写出相等关系。

如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。㈤注意单位换算 如,“小时”“分钟”的换算;s、v、t单位的一致等。

七、应用举例(略)

第六章 一元一次不等式(组) ★重点★一元一次不等式的性质、解法 ☆ 内容提要☆ 1. 定义:a>b、a<b、a≥b、a≤b、a≠b。

2. 3. 一元一次不等式:ax>b、ax<b、ax≥b、ax≤b、ax≠b(a≠0)。 一元一次不等式组:

4. 不等式的性质:⑴a>b←→a+c>b+c ⑵a>b←→ac>bc(c>0) ⑶a>b←→ac

⑷(传递性)a>b,b>c→a>c ⑸a>b,c>d→a+c>b+d.

5.一元一次不等式的解、解一元一次不等式

6.一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集) 7.应用举例(略)

第七章 相似形

★重点★相似三角形的判定和性质 ☆内容提要☆

一、相似三角形性质

1.对应线段…;2.对应周长…;3.对应面积…。

二、相关作图

①作第四比例项;②作比例中项。

三、证(解)题规律、辅助线

1.“等积”变“比例”,“比例”找“相似”。

2.找相似找不到,找中间比。方法:将等式左右两边的比表示出来。⑴

amcmm?,?(为中间比) bndnnamcm?,?',n?n' bndnamcm'mm'''⑶?,?'(m?m,n?n或?') bndnnn⑵

3.添加辅助平行线是获得成比例线段和相似三角形的重要途径。

4.对比例问题,常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k。 5.对于复杂的几何图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理。 五、 应用举例(略)

第八章 函数及其图象

★重点★正、反比例函数,一次、二次函数的图象和性质。 ☆ 内容提要☆

一、平面直角坐标系

1.各象限内点的坐标的特点 2.坐标轴上点的坐标的特点

3.关于坐标轴、原点对称的点的坐标的特点 4.坐标平面内点与有序实数对的对应关系

二、函数

8

1.表示方法:⑴解析法;⑵列表法;⑶图象法。

2.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有 意义。

3.画函数图象:⑴列表;⑵描点;⑶连线。

三、几种特殊函数

(定义→图象→性质) 1. 正比例函数

⑴定义:y=kx(k≠0) 或y/x=k。 ⑵图象:直线(过原点) ⑶性质:①k>0,…②k<0,…

2. 一次函数

⑴定义:y=kx+b(k≠0)

⑵图象:直线过点(0,b)—与y轴的交点和(-b/k,0)—与x轴的交点。

y y y y o (k>0,b>0) x o (k<0,b>0) x o (k>0,b<0) x o (k<0,b<0) x

⑶性质:①k>0,…②k<0,… ⑷图象的四种情况:

3.

二次函数

2⑴定义:y?ax?bx?c(a?0)(一般式)

y?a(x?h)?k(a?0)(顶点式)

特殊地,y?ax(a?0),y?ax?k(a?0)都是二次函数。

⑵图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。

222y?ax2?bx?c(a?0)用配方法变为y?a(x?h)2?k(a?0),则顶点为(h,k);对称轴为直线

x=h;a>0时,开口向上;a<0时,开口向下。

⑶性质:a>0时,在对称轴左侧…,右侧…;a<0时,在对称轴左侧…,右侧…。 4.反比例函数 ⑴定义:y?k?kx?1或xy=k(k≠0)。 x⑵图象:双曲线(两支)—用描点法画出。

⑶性质:①k>0时,图象位于…,y随x…;②k<0时,图象位于…,y随x…;③两支曲线无限接近于坐标轴但永远不能到达坐标轴。

四、重要解题方法

1. 用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。如下图: y X=2 2.利用图象一次(正比例)函数、反比例函数、二次函数中的k、

(-1,5) b;a、b、c的符号。

六、应用举例(略)

第九章 解直角三角形

★重点★解直角三角形 ☆ 内容提要☆

o 求解析式? x 一、三角函数

1.定义:在Rt△ABC中,∠C=Rt∠,则sinA= ;cosA= ;tanA= .

9

2.

3.

特殊角的三角函数值: 0° 30° 45° 60° 90° sinα cosα tgα / 互余两角的三角函数关系:sin(90°-α)=cosα;… 4. 三角函数值随角度变化的关系

5.查三角函数表

二、解直角三角形

1.

定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

2222. 依据:①边的关系:a?b?c ②角的关系:A+B=90°

③边角关系:三角函数的定义。

注意:尽量避免使用中间数据和除法。

三、对实际问题的处理

1. 俯、仰角: 2.方位角、象限角: 3.坡度:

北 i

h 西 α 仰角 东 l 俯角 i=h/l=tgα 南

4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。

四、应用举例(略)

第十章 圆

★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。 ☆ 内容提要☆

一、圆的基本性质

1.圆的定义(两种)

2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。 3.“三点定圆”定理 4.垂径定理及其推论 5.“等对等”定理及其推论 5. 与圆有关的角:

⑴圆心角定义(等对等定理)

⑵圆周角定义(圆周角定理,与圆心角的关系) ⑶弦切角定义(弦切角定理)

二、直线和圆的位置关系

1.三种位置及判定与性质: d>R 直线与圆相离 d=R 直线与圆相切

d

2.切线的性质(重点) 3.切线的判定定理(重点)。圆的切线的判定有⑴…⑵… 4.切线长定理

三、圆换圆的位置关系

10

中考数学知识点复习 总复习资料大全(精华版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c40fze0pq7b62h6002tw881m9s40m5v00juk_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top