?x1?x2?a1?x?x?a2325??11. 证明:线性方程组?x3?x4?a3有解的充要条件是?ai?0.
i?1?x?x?a4?45??x5?x1?a5【解】
?1?0?A??0??0???1?1?0??0??0??0?1?0??0??0??0?1?0??0??0??0??11000?1100?1?11000?110000?11000?11000?110?10?110000?11000?11000?11000?110000?11000?11000?11000?11a1?a2??r2?r1a3??????a4?a5??a1?a2??r5?r2a3??????a4?a1?a5??a1??a2????a3??a4?a1?a2?a5??a1?a2?? a3??a4?5?ai??i?1?方程组有解的充要条件,即R(A)=4=R(A)
??ai?0得证.
i?1512. 设?是非齐次线性方程组Ax=b的一个解,ξ1,ξ2,?,ξn?r是对应的齐次线性方程组的一个基础解系.证明
(1)?,ξ1,?,ξn?r线性无关; (2)?,?+ξ1,?,?+ξn?r线性无关. 【 证明】
*****(1) ?,ξ1,?,ξn?r线性无关?
*k?*?k1ξ1???kn?rξn?r?0成立,
当且仅当ki=0(i=1,2,…,n?r),k=0
A(k?*?k1ξ1???kn?rξn?r)?0?kA??k1Aξ1???kn?rAξn?r?0∵ξ1,ξ2,?,ξn?r为Ax=0的基础解系
*
?A?i?0(i?1,2,?,n?r)
?kA?*?0由于A?*?b?0
?k?b?0?k?0..
由于ξ1,ξ2,?,ξn?r为线性无关
k1ξ1?ξ2?k2???kn?r?ξn?r?0?ki?0∴?,ξ1,ξ2,?,ξn?1线性无关. (2) 证?,?+ξ1,?,?+ξn?r线性无关.
****(i?1,2,?,n?r)
?k?*?k1(?*?ξ1)???kn?r(?*?ξn?r)?0成立
当且仅当ki=0(i=1,2,…,n?r),且k=0
k?*?k1(?*?ξ1)???kn?r(?*?ξn?r)?0
即
(k?k1???kn?r)?*?k1ξ1???kn?rξn?r?0
由(1)可知,?,ξ1,?,ξn?1线性无关. 即有ki=0(i=1,2,…,n?r),且
*k?k1?kn?r?0?k?0
∴?,?+ξ1,?,?+ξn?r线性无关.
***(B类)
1.B 2. C 3. D 4. C
5. t=?3
6. R(A)=2;2;2
7. 设η1,η2,…,ηs是非齐次线性方程组Ax=b的一组解向量,如果c1η1+c2η2+…+csηs也是该方程组的一个解向量,则c1+c2+…+cs= . 解:因为η1, η2,…, ηs是Ax=b的一组解向量,则Aη1=b, Aη2=b,…, Aηs=b,又
C1η1+ C2η2+…+ Csηs也是Ax=b的一解向量,所以A(C1η1+…+ Csηs)=b,即C1Aη1+ CAη2+…+ CsAηs=b,即C1b+ C2b+…+ Csb=b,(C1+…+Cs)b=b,所以C1+…+ Cs=1.
8. 设向量组?1=(1,0,2,3),?2=(1,1,3,5),?3=(1,?1,a+2,1),?4=(1,2,4,a+8),?=(1,1,b+3,5)
问:(1) a,b为何值时,?不能由?1,?2,?3,?4线性表出?
(2) a,b为何值时,?可由?1,?2,?3, ?4惟一地线性表出?并写出该表出式. (3) a,b为何值时,?可由?1,?2,?3,?4线性表出,且该表出不惟一?并写出该表出式. 【解】
??x1?1?x2?2?x3?3?x4?4 (*)
?1?0A?(A?b)???2??3?1?0??0??0113511121??121?r3?2r1?????a?24b?3?r4?3r1?1a?85?111??1?0?121?r?r32??????r4?2r2?0a2b?1????2a?52??0111?1?121??0a?10b??00a?10?111
(1) ?不能由?1,?2,?3,?4线性表出?方程组(*)无解,即a+1=0,且b≠0.即a=?1,且b≠0.
(2) ?可由?1,?2,?3,?4惟一地线性表出?方程组(*)有惟一解,即a+1≠0,即a≠?1. (*) 等价于方程组
?x1?x2?x3?x4?1?x?x?2x?1?234??(a?1)x3?b??(a?1)x4?0bba?b?1
?x4?0x3?x2?x3?1??1?a?1a?1a?1b2b?b?x1?1???0???1??a?1?a?1?a?12ba?b?1b?????1??2??3a?1a?1a?1(3) ?可由?1,?2,?3,?4线性表出,且表出不惟一?方程组(*)有无数解,即有 a+1=0,b=0?a=?1,b=0.
?x1?k2?2k1??x1?x2?x3?x4?1?x2?k1?2k2?1方程组(*)?? ??x?x?2x?1x3?k14?23??x4?k2?k1,k2,k3,k4为常数.
∴??(k2?2k1)?1?(k1?2k2?1)?2?k1?3?k2?4
9. 设有下列线性方程组(Ⅰ)和(Ⅱ)
?x1?x2?2x4??6?x1?mx2?x3?x4??5??(Ⅰ)?4x1?x2?x3?x4?1 (Ⅱ) ?nx2?x3?2x4??11
?3x?x?x?3?x3?2x4?1?t123??(1) 求方程组(Ⅰ)的通解;
(2) 当方程组(Ⅱ)中的参数m,n,t为何值时,(Ⅰ)与(Ⅱ)同解? 解:(1)对方程组(Ⅰ)的增广矩阵进行行初等变换
?110?2?6??1?4?1?1?11???0????3??3?1?10???0?1 ???0??010?5?1?4?100?110?101?2?2?6?725???621???2??4???5???110?2?6??00?125?????010?1?4??
由此可知系数矩阵和增广矩阵的秩都为3,故有解.由方程组
相关推荐: