第一范文网 - 专业文章范例文档资料分享平台

信息与计算科学专业实习报告

来源:用户分享 时间:2025/5/17 8:49:03 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

信息与计算科学专业 专业实习报告

在Matlab中,矩阵元素按列存储。

序号(Index)与下标(Subscript )是一一对应的,以m*n矩阵A为例,矩阵元素A(i,j)的序号为(j-1)*m+i。

其相互转换关系也可利用sub2ind和ind2sub函数求得。

3.3.2矩阵拆分

3.3.2.1利用冒号表达式获得子矩阵

(1) A(:,j)表示取A矩阵的第j列全部元素;A(i,:)表示A矩阵第i行的全部元素;A(i,j)表示取A矩阵第i行、第j列的元素。

(2) A(i:i+m,:)表示取A矩阵第i~i+m行的全部元素;A(:,k:k+m)表示取A矩阵第k~k+m列的全部元素,A(i:i+m,k:k+m)表示取A矩阵第i~i+m行内,并在第k~k+m列中的所有元素。此外,还可利用一般向量和end运算符来表示矩阵下标,从而获得子矩阵。end表示某一维的末尾元素下标。 3.3.2.2利用空矩阵删除矩阵的元素

在Matlab中,定义[]为空矩阵。给变量X赋空矩阵的语句为X=[]。注意,X=[]与clear X不同,clear是将X从工作空间中删除,而空矩阵则存在于工作空间中,只是维数为0。

3.3.3特殊矩阵

3.3.3.1魔方矩阵

魔方矩阵有一个有趣的性质,其每行、每列及两条对角线上的元素和都相等。对于n阶魔方阵,其元素由1,2,3,…,n2共n2个整数组成。Matlab提供了求魔方矩阵的函数magic(n),其功能是生成一个n阶魔方阵。 3.3.3.2范得蒙矩阵

范得蒙(Vandermonde)矩阵最后一列全为1,倒数第二列为一个指定的向量,其他各列是其后列与倒数第二列的点乘积。可以用一个指定向量生成一个范得蒙矩阵。在Matlab中,函数vander(V)生成以向量V为基础向量的范得蒙矩阵。

11

信息与计算科学专业 专业实习报告

3.3.3.3希尔伯特矩阵

希尔伯特矩阵在Matlab中,生成希尔伯特矩阵的函数是hilb(n)。使用一般方法求逆会因为原始数据的微小扰动而产生不可靠的计算结果。Matlab中,有一个专门求希尔伯特矩阵的逆的函数invhilb(n),其功能是求n阶的希尔伯特矩阵的逆矩阵。

3.3.3.4托普利兹矩阵

托普利兹(Toeplitz)矩阵除第一行第一列外,其他每个元素都与左上角的元素相同。生成托普利兹矩阵的函数是toeplitz(x,y),它生成一个以x为第一列,y为第一行的托普利兹矩阵。这里x, y均为向量,两者不必等长。toeplitz(x)用向量x生成一个对称的托普利兹矩阵。 3.3.3.5伴随矩阵

伴随矩阵 Matlab生成伴随矩阵的函数是compan(p),其中p是一个多项式的系数向量,高次幂系数排在前,低次幂排在后。 3.3.3.6帕斯卡矩阵

帕斯卡矩阵我们知道,二次项(x+y)n展开后的系数随n的增大组成一个三角形表,称为杨辉三角形。由杨辉三角形表组成的矩阵称为帕斯卡(Pascal)矩阵。函数pascal(n)生成一个n阶帕斯卡矩阵。

3.4矩阵的运算

3.4.1算术运算

Matlab的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\\(左除)、^(乘方)、’(转置)。运算是在矩阵意义下进行的,单个数据的算术运算只是一种特例。 3.4.1.1矩阵加减

矩阵加减运算假定有两个矩阵A和B,则可以由A+B和A-B实现矩阵的加减运算。运算规则是:若A和B矩阵的维数相同,则可以执行矩阵的加减运算,

12

信息与计算科学专业 专业实习报告

A和B矩阵的相应元素相加减。如果A与B的维数不相同,则Matlab将给出错误信息,提示用户两个矩阵的维数不匹配。 3.4.1.2矩阵乘法

矩阵乘法假定有两个矩阵A和B,若A为m*n矩阵,B为n*p矩阵,则C=A*B为m*p矩阵。 3.4.1.3矩阵除法

矩阵除法在Matlab中,有两种矩阵除法运算:\\和/,分别表示左除和右除。如果A矩阵是非奇异方阵,则A\\B和B/A运算可以实现。A\\B等效于A的逆左乘B矩阵,也就是inv(A)*B,而B/A等效于A矩阵的逆右乘B矩阵,也就是B*inv(A)。对于含有标量的运算,两种除法运算的结果相同。对于矩阵来说,左除和右除表示两种不同的除数矩阵和被除数矩阵的关系,一般A\\B≠B/A。 3.4.1.4矩阵的乘方

矩阵的乘方一个矩阵的乘方运算可以表示成A^x,要求A为方阵,x为标量。 3.4.1.5矩阵的转置

矩阵的转置对实数矩阵进行行列互换,对复数矩阵,共轭转置,特殊的,操作符.’共轭不转置(见点运算); 3.4.1.6点运算

点运算在Matlab中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。点运算符有.*、./、.\\和.^。两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。

3.4.2关系运算

Matlab提供了6种关系运算符:<(小于)、<=(小于或等于)、>(大于)、>=(大于或等于)、==(等于)、~=(不等于)。关系运算符的运算法则为:

(1) 当两个比较量是标量时,直接比较两数的大小。若关系成立,关系表达

13

信息与计算科学专业 专业实习报告

式结果为1,否则为0;

(2) 当参与比较的量是两个维数相同的矩阵时,比较是对两矩阵相同位置的元素按标量关系运算规则逐个进行,并给出元素比较结果。最终的关系运算的结果是一个维数与原矩阵相同的矩阵,它的元素由0或1组成;

(3) 当参与比较的一个是标量,而另一个是矩阵时,则把标量与矩阵的每一个元素按标量关系运算规则逐个比较,并给出元素比较结果。最终的关系运算的结果是一个维数与原矩阵相同的矩阵,它的元素由0或1组成。

3.4.3逻辑运算

Matlab提供了3种逻辑运算符:&(与)、|(或)和~(非)。 逻辑运算的运算法则为:

(1) 在逻辑运算中,确认非零元素为真,用1表示,零元素为假,用0表示; (2) 设参与逻辑运算的是两个标量a和b,那么,a&b a,b全为非零时,运算结果为1,否则为0。 a|b a,b中只要有一个非零,运算结果为1。~a 当a是零时,运算结果为1;当a非零时,运算结果为0。

(3) 若参与逻辑运算的是两个同维矩阵,那么运算将对矩阵相同位置上的元素按标量规则逐个进行。最终运算结果是一个与原矩阵同维的矩阵,其元素由1或0组成;

(4) 若参与逻辑运算的一个是标量,一个是矩阵,那么运算将在标量与矩阵中的每个元素之间按标量规则逐个进行。最终运算结果是一个与矩阵同维的矩阵,其元素由1或0组成;

(5) 逻辑非是单目运算符,也服从矩阵运算规则;

(6) 在算术、关系、逻辑运算中,算术运算优先级最高,逻辑运算优先级最低。

3.5矩阵分析

3.5.1对角阵

(1) 对角阵只有对角线上有非0元素的矩阵称为对角矩阵,对角线上的元素相等的对角矩阵称为数量矩阵,对角线上的元素都为1的对角矩阵称为单位矩阵。

(1) 提取矩阵的对角线元素设A为m*n矩阵,diag(A)函数用于提取矩阵A

14

信息与计算科学专业 专业实习报告

主对角线元素,产生一个具有min(m,n)个元素的列向量。diag(A)函数还有一种形式diag(A,k),其功能是提取第k条对角线的元素。

(2) 构造对角矩阵设V为具有m个元素的向量,diag(V)将产生一个m*m对角矩阵,其主对角线元素即为向量V的元素。diag(V)函数也有另一种形式diag(V,k),其功能是产生一个n*n(n=m+k)对角阵,其第m条对角线的元素即为向量V的元素。

3.5.2三角阵

三角阵又进一步分为上三角阵和下三角阵,所谓上三角阵,即矩阵的对角线以下的元素全为0的一种矩阵,而下三角阵则是对角线以上的元素全为0的一种矩阵。

(1) 上三角矩阵 求矩阵A的上三角阵的Matlab函数是triu(A)。 triu(A)函数也有另一种形式triu(A,k),其功能是求矩阵A的第k条对角线以上的元素。

(2) 下三角矩阵在Matlab中,提取矩阵A的下三角矩阵的函数是tril(A)和tril(A,k),其用法与提取上三角矩阵的函数triu(A)和triu(A,k)完全相同。

3.5.3矩阵的转置与旋转

(1) 矩阵的转置 转置运算符是单撇号(’)。

(2) 矩阵的旋转 利用函数rot90(A,k)将矩阵A旋转90o的k倍,当k为1时可省略。

3.5.4矩阵的翻转

对矩阵实施左右翻转是将原矩阵的第一列和最后一列调换,第二列和倒数第二列调换,…,依次类推。矩阵A实施左右翻转的函数是fliplr(A),对矩阵A实施上下翻转的函数是flipud(A)。

3.5.5矩阵的逆与伪逆

(1) 矩阵的逆 对于一个方阵A,如果存在一个与其同阶的方阵B,使得:AB=BA=I (I为单位矩阵) 则称B为A的逆矩阵,当然,A也是B的逆矩阵。求方阵A的逆矩阵可调用函数inv(A)。

(2) 矩阵的伪逆如果矩阵A不是一个方阵,或者A是一个非满秩的方阵时,

15

搜索更多关于: 信息与计算科学专业实习报告 的文档
信息与计算科学专业实习报告.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c4183i0s5jw3ibqw7sipv_3.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top