第一范文网 - 专业文章范例文档资料分享平台

工程数学线性代数课后习题答案

来源:用户分享 时间:2025/5/18 18:00:56 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

?1?0 ~?0?0??1?0 ~?0?0?010001002?1002?1000?1100010?2??1?(下一步4?0??

r2r3 )

?2?3?4?0???010??101??123? 2 设?100?A?010???456??001??001??789????????010? 解 ?100?是初等矩阵E(1

?001???

求A

2) 其逆矩阵就是其本身

?101? ?010?是初等矩阵E(1 2(1)) 其逆矩阵是

?001????10?1? E(1 2(1)) ??010??001????010??123??10?1? A??100??456??010?

?001??789??001????????456??10?1??452? ??123??010???122??789??001??782??????? 3 试利用矩阵的初等变换

求下列方阵的逆矩阵

?321? (1)?315??323???

?321100??321100? 解 ?315010?~?0?14?110?

?323001??002?101??????3203/20?1/2??3007/22?9/2? ~??0?1011?2?~?0?10/21?002?101???01?001?1 ~??1007/62/3?3/2??010?1?12??001?1/201/2?

???72故逆矩阵为?6

3?32????1

?12?

?1?

?20

1?2??

? (2)?3?0?2202?11?? ?1?2?3?2??0121??

? 解 ?3?0?2?1?202?2?13?2110000?010010?

?01210000?1???1?2? ~??0132?2100000101???04?292510101?300?

00??? ~?1?2?3?20010??0?00121110100?01?

?00?2?10130??4?2??1?/2?2?

??1?2?3?20010 ~??01210001???001110?3?4? ?000121?6?10????? ~??01?2100011`?20??2?0010?011???0000121?11?36?106?? ??100 ~??0100?0000?01121?1?210?4?1?3?6?1061??? ?00101???0111?2?4?故逆矩阵为???103?61???

?211?6?10?? 4 (1)设A???41?2? B???221??1?3??31?1???22? 求X使AX?3?1?? 解 因为

(A, B)???4?21?21?3?r?100102?

?321?11 23?2?1?~ ?010 ?15?3????001124??所以 X?A?1B???102???15?3?

?124?? (2)设A???02?21? B???1???331?3?4???2?2331??? 求X使XA 解 考虑ATXTBT 因为

BB

?02?312?r?1002?4? (AT, BT)??2?132?3?~ ?010?17??13?431??001?14??????2?4?所以 XT?(AT)?1BT???17?

??14???2?1?1 从而 X?BA?1????474?????1?10? 5 设A??01?1???101??? 解 原方程化为(A AX

2X

A 求X

2E)X A 因为

??1?101?10? (A?2E, A)??0?1?101?1?

??10?1?101????10001?1? ~?010?101?

?0011?10????01?1?所以 X?(A?2E)?1A???101??1?10???没有等于0的r阶子式? 解 在秩是r的矩阵中

可能存在等于0的r1阶子式

3

也可能存在等于0的r阶子式 例如

1阶子式? 有

6 在秩是r 的矩阵中,有没有等于0的r?1000? A??0100??0010??? R(A)

搜索更多关于: 工程数学线性代数课后习题答案 的文档
工程数学线性代数课后习题答案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c41okq025m30wk4t3v4f03ibqw7s1q700tgy_11.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top