当0?x?90时, 令f(x)?cosx 取x0?0,h?(11??)??? 606018010800令xi?x0?ih,i?0,1,...,5400 则x5400??2?90
当x??xk,xk?1?时,线性插值多项式为
L1(x)?f(xk)x?xk?1x?xk ?f(xk?1)xk?xk?1xk?1?xk插值余项为
R(x)?cosx?L1(x)?1f??(?)(x?xk)(x?xk?1) 2又在建立函数表时,表中数据具有5位有效数字,且cosx??0,1?,故计算中有误差传播过程。
1??(f*(xk))??10?52x?xk?1x?xk?1R2(x)??(f*(xk))??(f*(xk?1))xk?xk?1xk?1?xk??(f*(xk))(x?xk?1x?xk?1?)xk?xk?1xk?1?xk
1??(f*(xk))(xk?1?x?x?xk)h??(f*(xk))?总误差界为
9
R?R1(x)?R2(x)1(?cos?)(x?xk)(x?xk?1)??(f*(xk))21??(x?xk)(xk?1?x)??(f*(xk))2 11??(h)2??(f*(xk))221?1.06?10?8??10?52?0.50106?10?5?4.设为互异节点,求证:
k(1)?xk (k?0,1,n, )l(x)?xjjj?0nn(2)?(xj?x)klj(x)?0 (k?0,1,n, )j?0证明
(1) 令f(x)?xk
若插值节点为xj,j?0,1,n,,则函数f(x)的n次插值多项式为
Ln(x)??kxx) jlj(。
j?0nf(n?1)(?)插值余项为Rn(x)?f(x)?Ln(x)??n?1(x)
(n?1)!又k?n,
?f(n?1)(?)?0?Rn(x)?0n
k??xkjlj(x)?x (k?0,1,n, )j?0n(2)?(xj?x)klj(x)j?0??(?Ckjxij(?x)k?i)lj(x)
j?0ni?0iknn??C(?x)(?xijlj(x))k?ii?0j?0n10
又0?i?n 由上题结论可知
?xl(x)?x
kjjij?0n?原式??Cki(?x)k?ixii?0n?(x?x)k?0
?得证。
5设f(x)?C2?a,b?且f(a)?f(b)?0,求证:
1maxf(x)?(b?a)2maxf??(x). a?x?ba?x?b8解:令x0?a,x1?b,以此为插值节点,则线性插值多项式为
L1(x)?f(x0)x?x1x?x0 ?f(x1)x0?x1x?x0x?bx?a?f(b) a?bx?a =?f(a)又f(a)?f(b)?0
?L1(x)?0插值余项为R(x)?f(x)?L1(x)??f(x)?1f??(x)(x?x0)(x?x1) 2(x?x0)(x?x1)21f??(x)(x?x0)(x?x1) 2又?1????(x?x0)?(x1?x)???2?
12?(x1?x0)41?(b?a)241?maxf(x)?(b?a)2maxf??(x). a?x?ba?x?b86.在?4?x?4上给出f(x)?ex的等距节点函数表,若用二次插值求ex的近似值,要使截断误差不超过10?6,问使用函数表的步长h应取多少? 解:若插值节点为xi?1,xi和xi?1,则分段二次插值多项式的插值余项为
11
1f???(?)(x?xi?1)(x?xi)(x?xi?1) 3!1?R2(x)?(x?xi?1)(x?xi)(x?xi?1)maxf???(x)
?4?x?46R2(x)?设步长为h,即xi?1?xi?h,xi?1?xi?h
123343?R2(x)?e4?h?eh.
62733若截断误差不超过10?6,则
R2(x)?10?6343eh?10?6 27?h?0.0065.?7.若yn?2n,求?4yn及?4yn.,
解:根据向前差分算子和中心差分算子的定义进行求解。
yn?2n
?4yn?(E?1)4yn
?4???(?1j)??E4?jynj?0?j?4?4???(?1j)??y4?n?jj?0?j?4 j?4?4?j??(?1)??2?ynj?0?j?44?(2?1)yn?yn?2n12?124?yn?(E?E)yn
?(E)(E?1)4yn?24 ?E?yn?yn?2?1244
?2n?28.如果f(x)是m次多项式,记?f(x)?f(x?h)?f(x),证明f(x)的k阶差分
12
相关推荐: