2410.00֣⣺ͼ٣RtABCУAB=ACDΪBCһ㣨BCغϣ߶ADƵAʱת90õAEEC߶BCDCEC֮ĵϵʽΪ BC=DC+EC
̽ͼڣRtABCRtADEУAB=ACAD=AEADEƵAתʹDBCϣ̽߶ADBDCD֮ĵϵ֤Ľۣ
ӦãͼۣıABCDУABC=ACB=ADC=45㣮BD=9CD=3ADij
1֤BADաCAEȫεʽ
2CEȫεʵõBD=CEACE=BõDCE=90㣬ݹɶ㼴ɣ
3AEADʹAE=ADCEDE֤BADաCAEõBD=CE=9ݹɶ㼴ɣ 𡿽⣺1BC=DC+EC £ߡBAC=DAE=90㣬
BACDAC=DAEDACBAD=CAE ڡBAD͡CAEУ
BADաCAE BD=CE
BC=BD+CD=EC+CD ʴΪBC=DC+EC 2BD2+CD2=2AD2
£CE
ɣ1ãBADաCAE BD=CEACE=B DCE=90㣬 CE2+CD2=ED2
RtADEУAD2+AE2=ED2AD=AE BD2+CD2=2AD2
3AEADʹAE=ADCEDE ߡBAC+CAD=DAE+CAD BAD=CAD䣬 ڡBADCAEУ
BADաCAESAS BD=CE=9
ߡADC=45㣬EDA=45㣬 EDC=90㣬 DE=
ߡDAE=90㣬 AD=AE=
DE=6
=6
2512.00֣y=x2+x1xύڵABAڵBࣩyύڵC䶥ΪDλֱly=tt
ϷIJ
ֱl·ۣʣಿ뷭ۺͼһMεͼ 1ABDֱΪ 0 30
2ͼ٣߷ۺDڵEEڡABCڣ߽磩ʱtȡֵΧ
3ͼڣt=0ʱQǡMͼһ㣬ǷCQΪֱԲxڵPڣPꣻڣ˵ɣ
1öκͼϵAB꣬䷽ҳߵĶDꣻ
2ɵD϶ԳҳE꣬ݵBCôϵֱBCĽʽһκͼϵɵótһԪһβʽ飬֮ɵótȡֵΧ
3ڣPΪm0QĺΪmmm3m3ùɶҳmһԪη̣֮ɵómֵҳP꣬ý⣮
𡿽⣺1y=0ʱЩx2+x1=0 ãx1=x2=3
AΪ0BΪ30 y=x2+x1=x2x1=x2+DΪ
ʴΪ030
2ߵEDֱy=tԳƣ EΪ2t
x=0ʱy=x2+x1=1 CΪ01
߶BCֱߵĽʽΪy=kx+b B30C01y=kx+b
ã
߶BCֱߵĽʽΪy=x1 ߵEڡABCڣ߽磩
࣬
ãtܣ
3xx3ʱy=x2+x1 x3ʱy=x2x+1
ڣPΪm0QĺΪm ٵmm3ʱQΪmx2+x1ͼ1 CQΪֱԲxڵP