§8.8 圆锥曲线的综合问题
A组 基础题组
1.(2016超级中学原创预测卷十,18,15分)已知椭圆C的中心在坐标原点,焦点在x轴上,一个顶点为B(0,-1),且右焦点到直线x-y+3=0的距离为2. (1)求椭圆C的标准方程;
(2)若P1,P2是椭圆C上不同的两点,P1P2⊥x轴,圆E过P1,P2,且椭圆C上任意一点都不在圆E内,则称圆E为该椭圆的一个内切圆.试问:椭圆C是否存在过左焦点F的内切圆?若存在,求出圆心E的坐标;若不存在,请说明理由.
2.(2015浙江新高考研究卷一(镇海中学),18)设焦点在x轴上的椭圆C:+y=1的左,右焦点分别为F1,F2,C上存在点M,使·=0.
(1)设直线y=x+2与椭圆的一个公共点为P,若|PF1|+|PF2|取得最小值,求此时椭圆的方程; (2)对于(1)中的椭圆,是否存在斜率为k(k≠0)的直线,与椭圆交于不同的两点A,B,且AB的垂直平分线过椭圆的下顶点?若存在,求出k的取值范围;若不存在,说明理由.
3.(2015北京,19,14分)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.
(1)求椭圆C的方程,并求点M的坐标(用m,n表示);
(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N.问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标;若不存在,说明理由.
4.(2014安徽,19,13分)如图,已知两条抛物线E1:y=2p1x(p1>0)和E2:y=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1,A2两点,l2与E1,E2分别交于B1,B2两点. (1)证明:A1B1∥A2B2;
2
2
2
(2)过O作直线l(异于l1,l2)与E1,E2分别交于C1,C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.
5.(2015课标Ⅱ,20,12分)已知椭圆C:9x+y=m(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M. (1)证明:直线OM的斜率与l的斜率的乘积为定值;
(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.
6.(2015浙江冲刺卷四,18)设椭圆C:+=1(a>b>0)过点M(1,1),离心率e=,O为坐标原点. (1)求椭圆C的方程;
(2)若直线l是圆O:x+y=1的任意一条切线,且直线l与椭圆C相交于A,B两点. ①求·的值;
2
2
2
2
2
②求△OAB的面积S的最小值.
7.(2015湖南,20,13分)已知抛物线C1:x=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点,C1与C2的公共弦的长为2. (1)求C2的方程;
(2)过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且与同向. (i)若|AC|=|BD|,求直线l的斜率;
(ii)设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,△MFD总是钝角三角形.
8.(2015浙江模拟训练冲刺卷一,18)已知椭圆C:+y=1的上顶点为A(0,1),与x轴不垂直的直线l交椭圆C于不同的两点M, N(点M,N不同于椭圆的四个顶点). (1)当直线l过点(0,-3)时,求△AMN的面积S的最大值;
(2)是否存在不过原点O的直线l,使得直线OM,MN,ON的斜率依次成等比数列?若存在,试求出直线l的斜率;若不存在,请说明理由.
2
2
B组 提升题组
1.(2013安徽,18,12分)设椭圆E:+=1的焦点在x轴上. (1)若椭圆E的焦距为1,求椭圆E的方程;
(2)设F1,F2分别是椭圆E的左,右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q.证明:当a变化时,点P在某定直线上.
2.(2016金丽衢一联,19,15分)已知点M(0,)是椭圆C:+=1(a>b>0)的一个顶点,椭圆C的离心率为.
(1)求椭圆C的方程;
(2)已知点P(x0,y0)是定点,直线l:y=x+m(m∈R)交椭圆C于不同的两点A,B,记直线PA,PB的斜率分别为k1,k2.求点P的坐标,使得k1+k2恒为0.
相关推荐: