精品文档
则sinB=故答案为:
==.
.
【点评】此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.
16.(5分)若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是
.
【分析】列表得出所有等可能结果,从中找到点M在第二象限的结果数,再根据概率公式计算可得. 【解答】解:列表如下:
由表可知,共有6种等可能结果,其中点M在第二象限的有2种结果, 所以点M在第二象限的概率是=, 故答案为:.
【点评】本题考查了利用列表法与树状图法求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=.
17.(5分)若关于x、y的二元一次方程组
,的解是
,则关于a、
。
9欢迎下载
精品文档
b的二元一次方程组的解是 .
【分析】利用关于x、y的二元一次方程组,的解是可得m、n的
数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解的方法更好. 【解答】解:方法一: ∵关于x、y的二元一次方程组∴将解
代入方程组
,的解是,
可得m=﹣1,n=2
∴关于a、b的二元一次方程组
可整理为:
解得:
方法二:
关于x、y的二元一次方程组由关于a、b的二元一次方程组
,的解是
, 可知
解得:
故答案为:
【点评】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.
18.(5分)若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=
。
10欢迎下载
精品文档
(k为常数)的图象上,则y1、y2、y3的大小关系为 y2<y1<y3 .
【分析】设t=k2﹣2k+3,配方后可得出t>0,利用反比例函数图象上点的坐标特征可求出y1、y2、y3的值,比较后即可得出结论. 【解答】解:设t=k2﹣2k+3, ∵k2﹣2k+3=(k﹣1)2+2>0, ∴t>0.
∵点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=常数)的图象上,
∴y1=﹣,y2=﹣t,y3=t, 又∵﹣t<﹣<t, ∴y2<y1<y3.
故答案为:y2<y1<y3.
【点评】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.
19.(5分)如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=
,∠EAF=45°,则AF的长为
.
(k为
【分析】取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,
再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.
【解答】解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x, ∵四边形ABCD是矩形,
∴∠D=∠BAD=∠B=90°,AD=BC=4, ∴NF=
x,AN=4﹣x,
。
11欢迎下载
精品文档
∵AB=2, ∴AM=BM=1, ∵AE=
,AB=2,
∴BE=1, ∴ME=
∵∠EAF=45°, ∴∠MAE+∠NAF=45°, ∵∠MAE+∠AEM=45°, ∴∠MEA=∠NAF, ∴△AME∽△FNA, ∴∴
, ,
=
,
解得:x=, ∴AF=故答案为:
=.
.
【点评】本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,
20.(5分)观察下列各式:
=1+
,
=1+,
=1+,
。
12欢迎下载
相关推荐: