22?xsinx?2xcosx?2?cosxdx?xsinx?2xcosx?2sinx?C
¡ï(4)
?(x?1)e2?xdx
˼·£º·ÖÏîºó·Ö²¿»ý·Ö¼´¿É¡£ ½â£º?(x2?1)e?xdx???e??e??e¡ï(5)
?x?x2e?xdx??e?xdx??x2?x2d(?e?x)??x?e?xdx
?xx?2?xex?2xe22?xdx??e?x?xdx??ex?2?xd(?e?x2)??edx
?x?x2?x?2?edx??e?xdx??ex?2xe?x?3?edx?x(x?2x?3)?C.
?xln(x?1)dx
11212˼·£ºÑϸñ°´ÕÕ¡°·´¡¢¶Ô¡¢ÃÝ¡¢Èý¡¢Ö¸¡±Ë³Ðò´Õ΢·Ö¼´¿É¡£ ½â£º?xln(x?1)dx??12xln(x?1)??x2?ln(x?1)d(2x?(x?1?1x?12)?xln(x?1)-221214?x?1dx
x?2x212)dx?xln(x?1)?12x?12ln(x?1)?C.
¡ï(6)
?ecosxdx
˼·£ºÑϸñ°´ÕÕ¡°·´¡¢¶Ô¡¢ÃÝ¡¢Èý¡¢Ö¸¡±Ë³Ðò´Õ΢·Ö¼´¿É¡£ ½â£º??e?xcosxdx???e??e?x?x?cosxd(?e?x?x)??e?x?xcosx??x?e?xsinxdx
?xcosx??sinxd(?ee?x)??ecosx?esinx??ecosxdx
(sinx?cosx)?C.cosxdx?sinxx2¡ï3¡¢ÒÑÖªÊÇf(x)µÄÔº¯Êý£¬Çó
?xf?(x)dx¡£
sinxx֪ʶµã£º¿¼²ìÔº¯ÊýµÄ¶¨Òå¼°·Ö²¿»ý·Ö·¨µÄÁ·Ï°¡£
˼··ÖÎö£º»ý·Ö ?xf?(x)dxÖгöÏÖÁËf?(x)£¬Ó¦ÂíÉÏÖªµÀ»ý·ÖӦʹÓ÷ֲ¿»ý·Ö£¬ Ìõ¼þ¸æËßÄã
ÊÇf(x)µÄÔº¯Êý£¬Ó¦¸ÃÖªµÀ
?f(x)dx?sinxx?C.
½â£º?ÓÖ??xf?(x)dx??xd(f(x))=xf(x)??f(x)dx?sinxx?C,?f(x)??f(x)dx
,?xf(x)?2xxcosx?sinxx;
?xcosx?sinxx2??xf?(x)dx?xcosx?sinxxsinxx?C?cosx?sinx?C
¡ï¡ï4¡¢ÒÑÖªf(x)=exx£¬Çó
?xf??(x)dx¡£
25
֪ʶµã£ºÈÔÈ»ÊÇ·Ö²¿»ý·Ö·¨µÄÁ·Ï°¡£
˼··ÖÎö£º»ý·Ö?xf??(x)dxÖгöÏÖÁËf??(x)£¬Ó¦ÂíÉÏÖªµÀ»ý·ÖӦʹÓ÷ֲ¿»ý·Ö¡£ ½â£º??xf??(x)dx?ÓÖ?f(x)=?xd(f?(x))?xf?(x)??xe?exe2xxxf?(x)dx?xf?(x)?f(x)?C.
exx,?f?(x)=?e(x?1)xx2,?xf?(x)=e(x?1)xx;
??xf??(x)dx??e(x?1)xxx?x?C?e(x?2)x?C.
1cosxn?1¡ï¡ï¡ï¡ï5¡¢ÉèIn?sindxnx£¬(n?2)£»Ö¤Ã÷£ºIn??n?1sin?x?n?2n?1In?2¡£
֪ʶµã£ºÈÔÈ»ÊÇ·Ö²¿»ý·Ö·¨µÄÁ·Ï°¡£
˼··ÖÎö£ºÒªÖ¤Ã÷µÄÄ¿±ê±í´ïʽÖгöÏÖÁËIn£¬
1sinxncosxsinn?1xºÍIn?2 ÌáʾÎÒÃÇÈçºÎÔÚ±»»ýº¯ÊýµÄ±í´ïʽ
Öбä³ö
cosxsinn?1x2 ºÍ
1sinn?2x ÄØ£¿ÕâÀïÉæ¼°µ½Èý½Çº¯ÊýÖÐ1µÄ±äÐÎÓ¦Ó㬳õµÈÊýѧÖÐÓйýרÃŵÄ
½éÉÜ£¬ÕâÀï1¿É±äΪsinx?cosx¡£
2Ö¤Ã÷£º?1=sin2x?cos2x ?In??????sin2ndxnx??sinx?cosxsinxn22dx??sincosxn2xdx??sinsinxn2xdx??sincosxn2xdx??sin1n?2xdx?sinncosxxdx?In?2??sincosxnxdsinx?In?2nn?1cosxsinxcosxsinsinn-1sinx??sinx??In?2?n??sinx?sinx?nsinsin2n2nxcosx2xn?1dx?In?21?sinxsinxn2cosxsinxxxdx?In?2?cosxsinsinxxcosxn?1?In?2?n?dx?In?2cosxn?1?In?2?nIn?nIn?2?In?2??cosxn?1?nIn?(n?2)In?2?In??1n?1sinx?n?2n?1In?2.¡ï¡ï¡ï¡ï6¡¢Éè
f(x)Ϊµ¥µ÷Á¬Ðøº¯Êý£¬f(x)ΪÆä·´º¯Êý£¬ÇÒ?f(x)dx?F(x)?C £¬
-1Çó£º
?f(x)dx¡£
?1֪ʶµã£º±¾Ì⿼²ìÁËÒ»¶Ô»¥Îª·´º¯ÊýµÄº¯Êý¼äµÄ¹ØÏµ£¬»¹ÓоÍÊÇ·Ö²¿»ý·Ö·¨µÄÁ·Ï°¡£ ˼··ÖÎö£ºÒªÃ÷°×x?f(f½â£º??1(x))ÕâÒ»ºãµÈʽ£¬ÔÚ·Ö²¿»ý·Ö¹ý³ÌÖÐÊÊÊ±Ìæ»»¡£
-1?f(x)dx=xf(x)-?xd(f(x))
-1-1 26
ÓÖ?x?f(f?1(x))
?1??fÓÖ??1(x)dx?f(x)??xd(f?1(x))?f?1(x)??f(f?1(x))d(f?1(x))
?f(x)dx?F(x)?C
?1??f(x)dx?f?1(x)??f(f?1(x))d(f?1(x))?f?1(x)?F(f?1(x))?C.
ϰÌâ4-4
1¡¢ ÇóÏÂÁв»¶¨»ý·Ö
֪ʶµã£ºÓÐÀíº¯Êý»ý·Ö·¨µÄÁ·Ï°¡£
˼··ÖÎö£º±»»ýº¯ÊýΪÓÐÀíº¯ÊýµÄÐÎʽʱ£¬ÒªÇø·Ö±»»ýº¯ÊýΪÓÐÀíÕæ·Öʽ»¹ÊÇÓÐÀí¼Ù·Öʽ£¬ÈôÊǼٷÖʽ£¬
ͨ³£½«±»»ýº¯Êý·Ö½âΪһ¸öÕûʽ¼ÓÉÏÒ»¸öÕæ·ÖʽµÄÐÎʽ£¬È»ºóÔÙ¾ßÌåÎÊÌâ¾ßÌå·ÖÎö¡£
¡ï(1)
?x?3dx
x3x3˼·£º±»»ýº¯ÊýΪ¼Ù·Öʽ£¬ÏȽ«±»»ýº¯Êý·Ö½âΪһ¸öÕûʽ¼ÓÉÏÒ»¸öÕæ·ÖʽµÄÐÎʽ£¬È»ºó·ÖÏî»ý·Ö¡£ ½â£º??x?27?27x?323x?33?x?3x?9?227x?32
??x?3?133xdx?32?(x?3x?9?227x?3)dx??(x?3x?9)dx??x?3dx27
x?x?9x?27lnx?3?C.¡ï¡ï¡ï(2)
?x?x?8x?x354dx
˼·£º±»»ýº¯ÊýΪ¼Ù·Öʽ£¬ÏȽ«±»»ýº¯Êý·Ö½âΪһ¸öÕûʽ¼ÓÉÏÒ»¸öÕæ·ÖʽµÄÐÎʽ£¬È»ºó·ÖÏî»ý·Ö¡£ ½â£º?3x?x?8x?x354?(x?x)?(x?x)?(x?x)?x?x?8x?x3534232?x?x?1?2x?x?8x?x32,
¶øx?x?x(x?1)(x?1),
Áî
x?x?8x?x32?Ax?Bx?1?Cx?1£¬µÈʽÓÒ±ßͨ·Öºó±È½ÏÁ½±ß·Ö×ÓxµÄͬ´ÎÏîµÄϵÊýµÃ£º
?A?B?C?1?A?8???C?B?1½â´Ë·½³Ì×éµÃ£º?B??4 ??C??3A?8?? 27
??x?x?8x?x54354?x?x?1?dx?228x?4x?18x??3x?14x?1?3x?1)dx
??x?x?8x?x13x?33?(x?x?1?123x?x?8lnx?4lnx?1?3lnx?1?C3?1dx
2¡ï¡ï¡ï(3)
?x˼·£º½«±»»ýº¯ÊýÁÑÏîºó·ÖÏî»ý·Ö¡£
32½â£º?x?1?(x?1)(x?x?1)£¬Áî
3x?13?Ax?1?Bx?Cx?x?12µÈʽÓÒ±ßͨ·Öºó±È½ÏÁ½±ß·Ö×Ó
xµÄͬ´ÎÏîµÄϵÊýµÃ£º
?A+B=0?A?1???B+C-A=0½â´Ë·½³Ì×éµÃ£º?B??1 ?A+C=3?C?2??1?3x?13?1x?1??x?2x?x?12?1x?1?2(2x?1)?12)?(2323)2 (x?21?1x?1?2(2x?1)12)?2(x?34?32(x?1121)?(232)2??3x?13dx??x?111dx??2(2x?1)12)?2(x?34dx?3?21(x?12)?(232dx)2?lnx?1??21(x?12)?234d((x?12)?234)?3?(1x?12)2?13x?d(1
2)322?lnx?1?12ln(x?x?1)?23arctan(2x?13)?C.¡ï¡ï
(4)?x?1(x?1)3dx
˼·£º½«±»»ýº¯ÊýÁÑÏîºó·ÖÏî»ý·Ö¡£
28
Ïà¹ØÍÆ¼ö£º