第一范文网 - 专业文章范例文档资料分享平台

2015-2016年广东省深圳高级中学高二(上)期末数学试卷(理科)及答案

来源:用户分享 时间:2025/6/1 15:13:07 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

20.(5分)如图,线段AB=8,点C在线段AB上,且AC=2,P为线段CB上一动点,点A绕点C旋转后与点B绕点P旋转后重合于点D.设CP=x,△CPD的面积为f(x).则f(x)的定义域为 (2,4) ; f′(x)=0的解是 3 .

【解答】解:由题意,DC=2,CP=x,DP=6﹣x

∵△CPD,∴,解得x∈(2,4)

如图,三角形的周长是一个定值8,

故其面积可用海伦公式表示出来即=∴f′(x)=

=,

f(x)

令 f′(x)=0,解得x=3, 故答案为:(2,4),3.

六.解答题(本大题共2小题,共24分.解答应写出文字说明、证明过程或演算步骤)

21.(10分)计算下列积分: (1)(2)

【解答】解:(1)(﹣x+x2)|(2)∴

; .

=

(1﹣x)dx+

(x﹣1)dx=(x﹣x2)|

+

=2+=,

表示以原点为圆心以1为半径的圆的面积的四分之一, =

第17页(共19页)

22.(14分)已知函数f(x)=﹣x3+x2+b,g(x)=alnx. (1)若f(x)在x∈[﹣

]上的最大值为,求实数b的值;

(2)若对任意x∈[1,e],都有g(x)≥﹣x2+(a+2)x恒成立,求实数a的取值范围;

(3)在(1)的条件下,设F(x)=

,对任意给定的正实数a,曲

线y=F(x)上是否存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形(O为坐标原点),且此三角形斜边中点在y轴上?请说明理由.

【解答】解:(1)由f(x)=﹣x3+x2+b,得f′(x)=﹣3x2+2x=﹣x(3x﹣2), 令f′(x)=0,得x=0或. 列表如下: x f′(x) f(x) 0 0 极小值 + ↗ ﹣ ↘ 0 极大值 ﹣ ↘ ∵∴即最大值为

,,

,∴b=0.…(4分)

(2)由g(x)≥﹣x2+(a+2)x,得(x﹣lnx)a≤x2﹣2x. ∵x∈[1,e],∴lnx≤1≤x,且等号不能同时取, ∴lnx<x,即x﹣lnx>0, ∴令

恒成立,即

,求导得,

当x∈[1,e]时,x﹣1≥0,lnx≤1,x+1﹣2lnx>0,从而t′(x)≥0,

∴t(x)在[1,e]上为增函数,∴tmin(x)=t(1)=﹣1,∴a≤﹣1.…(8分)

第18页(共19页)

(3)由条件,,

假设曲线y=F(x)上存在两点P,Q满足题意,则P,Q只能在y轴两侧, 不妨设P(t,F(t))(t>0),则Q(﹣t,t3+t2),且t≠1. ∵△POQ是以O(O为坐标原点)为直角顶点的直角三角形,∴∴﹣t2+F(t)(t3+t2)=0…(*),…(10分)

是否存在P,Q等价于方程(*)在t>0且t≠1时是否有解.

①若0<t<1时,方程(*)为﹣t2+(﹣t3+t2)(t3+t2)=0,化简得t4﹣t2+1=0,此方程无解; …(11分)

②若t>1时,(*)方程为﹣t2+alnt?(t3+t2)=0,即设h(t)=(t+1)lnt(t>1),则

显然,当t>1时,h′(t)>0,即h(t)在(1,+∞)上为增函数,∴h(t)的值域为(h(1),+∞),即(0,+∞),∴当a>0时,方程(*)总有解. ∴对任意给定的正实数a,曲线y=F(x)上总存在两点P,Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y轴上.…(14分)

第19页(共19页)

2015-2016年广东省深圳高级中学高二(上)期末数学试卷(理科)及答案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c43j1y8jinu5ap1c1kzfj507xn0uyq600qij_5.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top