华南理工大学高数(上)期末考题参考答案
一、填空题(每小题3分,共15分) 1.设y?arctan1?x,则dyx?0?1x1dx . 42.lim(1?sinx)?e .
x?03.已知△ABC的三个顶点的坐标为A(1,0,1),B(2,1,0),C(0,1,1),则∠BAC?6 . 24.曲线y?1211x?lnx(1?x?e)的弧长等于(e2?1).
4421. 25.
???0xe?xdx?2二、选择题(每小题3分,共15分) 1. 设
ddf(x)?g(x),h(x)?x2,则f[h(x)]?(D).
dxdx2222(A)g(x); (B)2xg(x); (C)xg(x); (D)2xg(x). 2.设f(x)?5?7?2,则x?0时,( B ).
(A)f(x)与x是等价无穷小量; (B)f(x)与x是同阶但非等价无穷小量; (C)f(x)是比x高阶的无穷小量; (D)f(x)是比x低阶的无穷小量. 3.设g(x)在(??,??)上严格单调减少,f(x)在x?x0处有极大值,则(A). (A)g[f(x)]在x?x0处有极小值;(B)g[f(x)]在x?x0处有极大值;
(C)g[f(x)]在x?x0处有最小值;(D)g[f(x)]在x?x0处有既无极值也无最值; 4.下列函数中,在定义域上连续的函数是( B )
xx1?sinx???xsin,x?0,,x?0,(A)f(x)??x (B)f(x)?? x??x?0;x?0;?0,?0,?1?x?1?ex?1?,x?0, ,x?0, (D)f(x)??(C)f(x)???xx??x?0.0,x?0;?0,? 1
5.若连续曲线y?f1(x)与y?f2(x)在[a,b]上关于x轴对称,则积分
?baf1(x)dx??f2(x)dx的值为( D )
ab(A)2?baf1(x)dx; (B)2?f2(x)dx; (C)2?[f1(x)?f2(x)]dx; (D)0
aabb三、解答下列各题(每小题7分,共28分)
?x?ln(1?t2),2dy?2t1. 设参数方程?,求. u2y??du,dx?01?u2?dyt2dydt1?t2t??? 解 因为
dx2tdx22dt1?tdyt1d()d()dt2dy1?t2dx22所以 ????222tdxdxd[ln(1?t)]4tdt21?t2. 求曲线y?xe解 因为 y??e?x在拐点处的切线方程.
?x?xe?x,y????e?x?e?x?xe?x?e?x(x?2),令y???0得x?2
?2?2当x?(??,2)时,y???0,当x?(2,??)时,y???0,且y(2)?2e,则点(2,2e)是
?x?x?2?x的拐点;又y?(2)?[e(1?x)]x?2??e,所以曲线y?xe在拐点处的切
曲线y?xe线方程是: y?2e3. 计算积分
e?2??e?2(x?2)
lnx?1x2dx.
elnxe1lnxe11e112e?2解 ? dx?[?]?dx???[?]???(??1)?1??112?1x21xxexeeee4.
?x21?x2dx.
解 解法一
?1?x2?11dx???dx??dx??1?x2dx 1?x21?x21?x2x211x1?x2)?C (参看p201例21)
22112 ?arcsinx?x1?x?C
22解法二 设 x?sint,则dx?cosxdt,代入得
?arcsinx?(arcsinx?
2
??sin2t1?cos2t11dx??costdt??dt?t?sin2t?C
cost2241?x2x21111t?sintcost?C?arcsinx?x1?x2?C 2222?ex?b,x?0四、(8分)确定常数a,b的值,使函数f(x)??在x?0处连续且可导.
arcsin(ax),x?0?解 由于f(x)在x?0处连续?limf(x)?f(0?0)?f(0?0),且
x?0f(0?0)?lim(ex?b)?1?b, f(0?0)?lim[arcsin(ax)]?0
x?0?0x?0?0所以 1?b?0
即 b??1 由于f(x)在x?0处可导?f??(0)?f??(0),且
f(x)?f(0)ex?b?(1?b)?lim?1 f??(0)?limx?0?0x?0?0xxf(x)?f(0)arcsin(ax)?(1?b)arcsin(ax)?lim?lim?a
x?0?0x?0?0x?0?0xxx所以 a?1
f??(0)?lim即a?1,b??1时f(x)在x?0处连续且可导. 五、(8分)已知f(x)的一个原函数是e解
?x2,求xf?(x)dx.
22??x?x?xf?(x)dx?xf(x)??f(x)dx?x[e]??e?C
222 ??2x2e?x?e?x?C??e?x(2x2?1)?C 六、(8分)设f(x)在[0,1]上可导,且f(0)?2?1f(x)dx.试证:存在??(0,1),使 221?x1(1??2)f?(?)?2?f(?)?0.
证 由积分中值定理有 f(0)?2?112f(x)f(?)1f(?)1dx?2(1?)???[,1]; 1?x21??221??22设 F(x)?f(x) 1?x2f(?);1??2则F(x)满足:①在[0,?]上连续;②在(0,?)内可导;③F(0)?f(0)?F(?)? 3
由洛尔定理,则至少存在一点??(0,?),使F?(?)?0,即
(1??2)f?(?)?2?f(?)?0??(0,?)?(0,1), 22(1??)即证 (1??)f?(?)?2?f(?)?0 ??(0,1)
2xt21dt?七、(8分)证明方程?在(0,1)内有且仅有一个实根. 01?t210xxt21dt?证 设 f(x)?? 01?t210x则f(x)在[0,1]上连续,在(0,1)内可导,且
?2xt?xt2?x3 f?(x)???x?01?t2dt???(?01?t2dt?1?x2)?0(x?0)
??即f(x)在[0,1]上单调递增;又
0?t211dt??0??0 f(0)??01?t21010011?t2111f(1)?dt??(1?)dt? ?01?t210?01?t2101 ?1??arctanx?0?119????0.115?0 10104由零点定理知,方程在(0,1)内有且仅有一个实根. 八、(10分)已知曲线y?ax(a?0)与曲线y?lnx在点(x0,y0)有公共切线,求
(1)常数a的值及切点;
(2)两曲线与x轴围成的平面图形绕x轴旋转所得旋转体的体积. 解 (1)由条件知x0(x0?0)满足
?ax0?lnx0?a1 , ???2x2x00?解之得a?1. e2 (2)由(1)知x0?e,则两曲线与x轴围成的平面图形绕x轴旋转所得旋转体的体积
4
V???e20e2lnxx2()dx???()2dx
1e2由于
?e20x1e22e2dx?2[x]0?, 2e2e2
?e21(lnx)dx?x(lnx)22?22e1??2?lnxdx
1e2e ?4e2?2[xlnx?x]1?2(e2?1),
所以
V??[e22?12?4?2(e?1)]?2
5
相关推荐: