同时又有
Rex=两式合并有
?xu?
4.641?Re0.5=即有
??u?
4.641×(6.7×104)0.5=u×1×103kg/m3×1.8mm/(1.81×105Pa·s)
u=0.012m/s
3.3污水处理厂中,将污水从调节池提升至沉淀池。两池水面差最大为10m,管路摩擦损失为4J/kg,流量为34 m3/h。求提升水所需要的功率。设水的温度为25℃。
解:设所需得功率为Ne,污水密度为ρ
Ne=Weqvρ=(gΔz+∑hf)qvρ
=(9.81m/s2×10m+4J/kg)×1×103kg/m3×34/3600m3/s =964.3W
3.4如图所示,有一水平通风管道,某处直径由400mm减缩至200mm。为了粗略估计管道中的空气流量,在锥形接头两端各装一个U管压差计,现测得粗管端的表压为100mm水柱,细管端的表压为40mm水柱,空气流过锥形管的能量损失可以忽略,管道中空气的密度为1.2kg/m3,试求管道中的空气流量。
-
图3-2习题3.4图示
解:在截面1-1′和2-2′之间列伯努利方程:
u12/2+p1/ρ=u22/2+p2/ρ
由题有u2=4u1
所以有u12/2+p1/ρ=16u12/2+p2/ρ 即
15 u12=2×(p1-p2)/ρ=2×(ρ0-ρ)g(R1-R2)/ρ=2×(1000-1.2)kg/m3×9.81m/s2×(0.1m-0.04m)/(1.2kg/m3) 解之得
u1=8.09m/s
所以有
6
u2=32.35m/s
qv=u1A=8.09m/s×π×(200mm)2=1.02m3/s
3.5如图3-3所示,有一直径为1m的高位水槽,其水面高于地面8m,水从内径为100mm的管道中流出,管路出口高于地面2m,水流经系统的能量损失(不包括出口的能量损失)可按
?hf?6.5u2计算,式中u为水在管内的流速,单位为m/s。试计算
(1)若水槽中水位不变,试计算水的流量;
(2)若高位水槽供水中断,随水的出流高位槽液面下降,试计算液面下降1m所需的时间。
图3-3习题3.5图示
解:(1)以地面为基准,在截面1-1′和2-2′之间列伯努利方程,有
u12/2+p1/ρ+gz1=u22/2+p2/ρ+gz2+Σhf
由题意得p1=p2,且u1=0 所以有
9.81m/s2×(8m-2m)=u2/2+6.5u2
解之得
u=2.90m/s
qv=uA=2.90m/s×π×0.01m2/4=2.28×102m3/s
(2)由伯努利方程,有
u12/2+gz1=u22/2+gz2+Σhf
即
u12/2+gz1=7u22+gz2
由题可得
u1/u2=(0.1/1)2=0.01
取微元时间dt,以向下为正方向 则有u1=dz/dt
所以有(dz/dt)2/2+gz1=7(100dz/dt)2/2+gz2
-
7
积分解之得t=36.06s
3.7水在20℃下层流流过内径为13mm、长为3m的管道。若流经该管段的压降为21N/m2。求距管中心5mm处的流速为多少?又当管中心速度为0.1m/s时,压降为多少?
解:设水的黏度μ=1.0×10-3Pa.s,管道中水流平均流速为um 根据平均流速的定义得:
?r04dpfq1dpf2 8?dlum=v????r02A?r08?dl所以
?pf??代入数值得
8?uml
r0221N/m2=8×1.0×10-3Pa·s×um×3m/(13mm/2)2
解之得
um=3.7×102m/s
又有
umax=2 um
所以
u=2um[1-(r/r0)2]
(1)当r=5mm,且r0=6.5mm,代入上式得
u=0.03m/s
(2)umax=2 um
Δpf’=umax’/umax·Δpf =0.1/0.074×21N/m
=28.38N/m
3.8温度为20℃的水,以2kg/h的质量流量流过内径为10mm的水平圆管,试求算流动充分发展以后: (1)流体在管截面中心处的流速和剪应力; (2)流体在壁面距中心一半距离处的流速和剪应力 (3)壁面处的剪应力 解:(1)由题有 um=qm/ρA
=2/3600kg/s/(1×103kg/m3×π×0.012m2/4)
-
8
=7.07×103m/s
-
Re?4?umd=282.8<2000
?管内流动为层流,故 管截面中心处的流速 umax=2 um=1.415×102m/s 管截面中心处的剪应力为0
(2)流体在壁面距中心一半距离处的流速: u=umax(1-r2/r02)
u1/2=1.415×102m/s×3/4=1.06×102m/s 由剪应力的定义得
-
-
-
????流体在壁面距中心一半距离处的剪应力: τ1/2=2μum/r0 =2.83×103N/m2 (3)壁面处的剪应力:
-
du?umr ?42drr0τ0=2τ1/2=5.66×103N/m2
3.9一锅炉通过内径为3.5m的烟囱排除烟气,排放量为3.5×105m3/h,在烟气平均温度为260℃时,其平均密度为0.6 kg/m3,平均粘度为2.8×10
4Pa·s。大气温度为
-
-
20℃,在烟囱高度范围内平均密度为1.15 kg/m3。为克服煤灰阻力,烟囱底部压力较地面大气压低245 Pa。问此烟囱需要多高?假
设粗糙度为5mm。
解:设烟囱的高度为h,由题可得
u=qv/A=10.11m/s Re=duρ/μ=7.58×104
相对粗糙度为
ε/d=5mm/3.5m=1.429×10
查表得
λ=0.028
所以摩擦阻力
-3
hu2?hf??d2
9
建立伯努利方程有
u12/2+p1/ρ+gz1=u22/2+p2/ρ+gz2+Σhf
由题有
u1=u2,p1=p0-245Pa,p2=p0-ρ空gh
即
(h×1.15 kg/m3×9.8m/s2-245Pa)/(0.6kg/m3)=h×9.8m/s2+h×0.028/3.5m×(10.11m/s)2/2 解之得
h=47.64m
3.10用泵将水从一蓄水池送至水塔中,如图3-4所示。水塔和大气相通,池和塔的水面高差为60m,并维持不变。水泵吸水口低于水池水面2.5m,进塔的管道低于塔内水面1.8m。泵的进水管DN150,长60m,连有两个90°弯头和一个吸滤底阀。泵出水管为两段管段串联,两段分别为DN150、长23m和DN100、长100 m,不同管径的管道经大小头相联,DN100的管道上有3个90°弯头和一个闸阀。泵和电机的总效率为60%。要求水的流量为140 m3/h,如果当地电费为0.46元/(kW·h),问每天泵需要消耗多少电费?(水温为25℃,管道视为光滑管)
3.11如图3-5所示,某厂计划建一水塔,将20℃水分别送至第一、第二车间的吸收塔中。第一车间的吸收塔为常压,第二车间的吸收塔内压力为20kPa(表压)。总管内径为50mm钢管,管长为(30+z0),通向两吸收塔的支管内径均为20mm,管长分别为28m和15m(以上各管长均已包括所有局部阻力当量长度在内)。喷嘴的阻力损失可以忽略。钢管的绝对粗糙度为0.2mm。现要求向第一车间的吸收塔供应1800kg/h的水,向第二车间的吸收塔供应2400kg/h的水,试确定水塔需距离地面至少多高?已知20℃水的粘度为1.0×103 Pa·s,摩擦系数可由式
-
58?????0.1????dRe?0.23计算。
图3-5习题3.11图示
解:总管路的流速为
u0=qm0/(ρπr2)=4200 kg/h/(1×103kg/m3×π×0.0252m2)=0.594m/s
第一车间的管路流速为
u1=qm1/(ρπr2)=1800kg/h/(1×103kg/m3×π×0.012m2)=1.592m/s 第二车间的管路流速为
u2=qm2/(ρπr2)=2400 kg/h/(1×103kg/m3×π×0.012m2)=2.122m/s 则Re0=duρ/μ=29700
10
相关推荐: