3(3)若cos∠BAD=,BE=6,求OE的长.
5类型四:关于相似三角形的证明问题
【例题4】(2016·黑龙江齐齐哈尔·8分)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.
(1)求证:△ACD∽△BFD;
(2)当tan∠ABD=1,AC=3时,求BF的长. 【考点】相似三角形的判定与性质.
【分析】(1)由∠C+∠DBF=90°,∠C+∠DAC=90°,推出∠DBF=∠DAC,由此即可证明. (2)先证明AD=BD,由△ACD∽△BFD,得【解答】(1)证明:∵AD⊥BC,BE⊥AC, ∴∠BDF=∠ADC=∠BEC=90°, ∴∠C+∠DBF=90°,∠C+∠DAC=90°, ∴∠DBF=∠DAC, ∴△ACD∽△BFD.
(2)∵tan∠ABD=1,∠ADB=90° ∴
=1,
=
=1,即可解决问题.
∴AD=BD, ∵△ACD∽△BFD, ∴
=
=1,
∴BF=AC=3.
【同步练】
(2016·湖北武汉·10分)在△ABC中,P为边AB上一点. (1) 如图1,若∠ACP=∠B,求证:AC2=AP·AB; (2) 若M为CP的中点,AC=2,
① 如图2,若∠PBM=∠ACP,AB=3,求BP的长;
② 如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.
【达标检测】
1. (2016·黑龙江哈尔滨·8分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.
(1)求证:AP=BQ;
(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.
2. (2016·四川内江)(9分)如图6所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.
(1)求证:D是BC的中点;
(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.
F A E B D
图6
C
3. (烟台市 2015 中考 -23)如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且
=
.
(1)试判断△ABC的形状,并说明理由.
(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.
4. (2015?内蒙古呼伦贝尔兴安盟,第22题7分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.
(1)求证:△ADE≌△CBF;
(2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.
5. (烟台市 2014 中考 -24)如图,AB是⊙O的直径,延长AB至P,使BP=OB,BD垂直于弦BC,垂足为点B,点D在PC上.设∠PCB=α,∠POC=β.
求证:tanα?tan
=.
6. (2015?梧州,第25题12分)如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.
(1)求证:HF=AP;
(2)若正方形ABCD的边长为12,AP=4,求线段EQ的长.
7. (2015?北海,第25题12分)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.
(1)求证:PE是⊙O的切线; (2)求证:ED平分∠BEP;
(3)若⊙O的半径为5,CF=2EF,求PD的长.
【参考答案】
类型一:关于三角形的综合证明题 【同步练】
(2016·山东省菏泽市·3分)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.
(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50° ①求证:AD=BE; ②求∠AEB的度数.
(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=2
CM+
BN.
【考点】等腰三角形的性质.
【分析】(1)①通过角的计算找出∠ACD=∠BCE,再结合△ACB和△DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可证出△ACD≌△BCE,由此即可得出结论AD=BE;
②结合①中的△ACD≌△BCE可得出∠ADC=∠BEC,再通过角的计算即可算出∠AEB的度数; (2)根据等腰三角形的性质结合顶角的度数,即可得出底角的度数,利用(1)的结论,通过解直角三角形即可求出线段AD、DE的长度,二者相加即可证出结论.
【解答】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,
∴∠ACB=∠DCE=180°﹣2×50°=80°. ∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE, ∴∠ACD=∠BCE.
∵△ACB和△DCE均为等腰三角形, ∴AC=BC,DC=EC. 在△ACD和△BCE中,有∴△ACD≌△BCE(SAS), ∴AD=BE.
②解:∵△ACD≌△BCE, ∴∠ADC=∠BEC.
∵点A,D,E在同一直线上,且∠CDE=50°, ∴∠ADC=180°﹣∠CDE=130°, ∴∠BEC=130°.
∵∠BEC=∠CED+∠AEB,且∠CED=50°, ∴∠AEB=∠BEC﹣∠CED=130°﹣50°=80°.
(2)证明:∵△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=120°, ∴∠CDM=∠CEM=×(180°﹣120°)=30°. ∵CM⊥DE,
∴∠CMD=90°,DM=EM.
在Rt△CMD中,∠CMD=90°,∠CDM=30°, ∴DE=2DM=2×
=2
CM.
,
∵∠BEC=∠ADC=180°﹣30°=150°,∠BEC=∠CEM+∠AEB, ∴∠AEB=∠BEC﹣∠CEM=150°﹣30°=120°, ∴∠BEN=180°﹣120°=60°.
在Rt△BNE中,∠BNE=90°,∠BEN=60°, ∴BE=
=
BN.
∵AD=BE,AE=AD+DE,
相关推荐: