把各种细胞器分开,提高生命活动效率
核膜:双层膜,其上有核孔,可供蛋白质和mRNA通过 结构核仁
33、细胞核由DNA及蛋白质构成,与染色体是同种物质在不同时期的 染色质两种状态
容易被碱性染料染成深色
功能:是遗传信息库,是遗传物质贮存和复制的场所,是细胞代谢和遗传的控制中心 ★34、植物细胞内的液体环境,主要是指液泡中的细胞液。 原生质层指细胞膜,液泡膜及两层膜之间的细胞质
植物细胞原生质层相当于一层半透膜;质壁分离中质指原生质层,壁为细胞壁 ★35、细胞膜和其他生物膜都是选择透过性膜
自由扩散:高浓度→低浓度,如H2O,O2,CO2,甘油,乙醇、苯 协助扩散:载体蛋白质协助,高浓度→低浓度,如葡萄糖进入红细胞
★36、物质跨膜运输方式主动运输:需要能量;载体蛋白协助;低浓度→高浓度,如小肠绒毛上皮细胞吸收氨基酸,葡萄糖,K+,Na+离子 胞吞、胞吐:如载体蛋白等大分子
★37、细胞膜和其他生物膜都是选择透过性膜,这种膜可以让水分子自由通过,一些离子和小分子也可以通过,而其他离子,小分子和大分子则不能通过。 38、本质:活细胞产生的有机物,绝大多数为蛋白质,少数为RNA 高效性:酶在降低反应的活化能方面比无机催化剂更显著, 因而催化效率更高
特性专一性:每种酶只能催化一种或一类化学反应
酶作用条件温和:适宜的温度,pH,最适温度(pH值)下,酶活性最高, 温度和pH偏高或偏低,酶活性都会明显降低,甚至失 活(过高、过酸、过碱)
功能:催化作用,降低化学反应所需要的活化能。
结构简式:A-P~P~P,A表示腺苷,P表示磷酸基团,~表示高能磷酸键 中文名称:三磷酸腺苷
★39、ATP与ADP相互转化:A-P~P~PA-P~P+Pi+能量(Pi表示磷酸)远离A的那个高能磷酸键断裂(1molATP水解释放30.54KJ能量)
元素组成:ATP由C、H、O、N、P五种元素组成 功能:细胞内直接能源物质
ADP中文名称叫二磷酸腺苷,结构简式A-P~P
ATP在细胞内含量很少,但在细胞内的转化速度很快,用掉多少马上形成多少。 ATP和ADP相互转化的过程和意义:
这个过程储存能量(放能反应)这个过程释放能量(吸能反应) ATP与ADP的相互转化ATPADP+Pi+能量
方程从左到右代表释放的能量,用于一切生命活动。 方程从右到左代表转移的能量,动物中为呼吸作用转移的能量。植物中来自光合作用和呼
吸作用。
意义:能量通过ATP分子在吸能反应和放能反应之间循环流通,ATP是细胞里的能量流通的能量\通货\
40、18世纪中期,人们认为只有土壤中水分构建植物,未考虑空气作用
1771年,英国普利斯特利实验证实植物生长可以更新空气,未发现光的作用 1779年,荷兰英格豪斯多次实验验证,只有阳光照射下,只有绿叶更新空气,但 未知释放该气体的成分。
1785年,明确放出气体为O2,吸收的是CO2 1845年,德国梅耶发现光能转化成化学能
1864年,萨克斯证实光合作用产物除O2外,还有淀粉
1939年,美国鲁宾卡门利用同位素标记法证明光合作用释放的O2来自水。 41、 叶绿素a
叶绿素主要吸收红光和蓝紫光 叶绿体中色素叶绿素b (类囊体薄膜)胡萝卜素
类胡萝卜素主要吸收蓝紫光 叶黄素
注色素:包括叶绿素3/4和类胡萝卜素1/4色素分布图: 色素提取实验:乙醇(丙酮)提取色素; 二氧化硅使研磨更充分 碳酸钙防止色素受到破坏
42、光合作用是指绿色植物通过叶绿体,利用光能,把CO2和H2O转化成储存能量的有机物,并且释放出O2的过程。 方程式:
CO2+H2180(CH2O)+18O2注意:光合作用释放的氧气全部来自水。 ★43、条件:一定需要光
光反应阶段场所:类囊体薄膜, 产物:[H]、O2和能量
过程:(1)水的光解,水在光下分解成[H]和O2; 2H2O-→4[H]+O2
(2)形成ATP:ADP+Pi+光能ATP
能量变化:光能变为ATP中活跃的化学能 条件:有没有光都可以进行 场所:叶绿体基质
暗反应阶段产物:糖类等有机物和五碳化合物
过程:(1)CO2的固定:1分子C5和CO2生成2分子C3 (2)C3的还原:C3在[H]和ATP作用下,部分还原成糖 类,部分又形成C5
能量变化:ATP活跃的化学能转变成化合物中稳定的化学能
联系:光反应阶段与暗反应阶段既有区别又紧密联系,是缺一不可的整体,光反应为暗反应提供[H]和ATP,暗反应为光反应提供ADP+Pi,没有光反应,暗反应无法进行,没有暗反应,有机物无法合成。
注:(A)环境因素对光合作用速率的影响
①空气中C02浓度②温度高低③光照强度④光照长短⑤光的成分 44、农业生产以及温室中提高农作物产量的方法
⑴、控制光照强度的强弱⑵、控制温度的高低⑶、适当的增加作物环境中二氧化碳的浓度
⑷、延长光合作用的时间。⑸、增加光合作用的面积-----合理密植,间作套种。⑹、温室大棚用无色透明玻璃。⑺、温室栽培植物时,白天适当提高温度,晚上适当降温。⑻、温室栽培多施有机肥或放置干冰,提高二氧化碳浓度。
★45、活细胞所需能量的最终源头是太阳能;流入生态系统的总能量为生产者固定的太阳能
★46、有氧呼吸与无氧呼吸比较 有氧呼吸无氧呼吸
场所细胞质基质、线粒体(主要)细胞质基质
产物CO2,H2O,能量CO2,酒精(或乳酸)、能量 反应式C6H12O6+6O26CO2+6H2O+能量 C6H12O62C3H6O3+能量
C6H12O62C2H5OH+2CO2+能量
过程第一阶段:1分子葡萄糖分解为2分子丙酮酸和少量[H],释放少量能量,细胞质基质
第二阶段:丙酮酸和水彻底分解成CO2 和[H],释放少量能量,线粒 体基质
第三阶段:[H]和O2结合生成水,
大量能量,线粒体内膜第一阶段:同有氧呼吸 第二阶段:丙酮酸在不同酶催化作用 下,分解成酒精和CO2或 转化成乳酸 能量大量少量
细胞呼吸是ATP分子高能磷酸键中能量的主要来源 注:细胞呼吸的意义及其在生产和生活中的应用
呼吸作用的意义:①为生命活动提供能量②为其他化合物的合成提供原料
47、细胞呼吸:有机物在细胞内经过一系列氧化分解,生成CO2或其他产物,释放能量并
生成ATP过程
48、细胞呼吸应用:
包扎伤口,选用透气消毒纱布,抑制细菌无氧呼吸
酵母菌酿酒:选通气,后密封。先让酵母菌有氧呼吸,大量繁殖,再无氧呼吸产 生酒精
花盆经常松土:促进根部有氧呼吸,吸收无机盐等
稻田定期排水:抑制无氧呼吸产生酒精,防止酒精中毒,烂根死亡 提倡慢跑:防止剧烈运动,肌细胞无氧呼吸产生乳酸 破伤风杆菌感染伤口:须及时清洗伤口,以防无氧呼吸
49、自养生物:可将CO2、H2O等无机物合成葡萄糖等有机物,如绿色植物,硝化细菌(化能合 成作用)
异养生物:不能将CO2、H2O等无机物合成葡萄糖等有机物,只能利用环境中现成的有机物来
维持自身生命活动,如许多动物。
50、细胞表面积与体积关系限制了细胞的长大,细胞增殖是生物体生长、发育、繁殖遗
传的基础。
有丝分裂:体细胞增殖
51、真核细胞的分裂方式减数分裂:生殖细胞(精子,卵细胞)增殖 ★无丝分裂:蛙的红细胞。分裂过程中没有出现纺缍丝和染色体 变化
★52、分裂间期:完成DNA分子复制及有关蛋白质合成,染色体数目不增加,DNA 加倍。
前期:核膜核仁逐渐消失,出现纺缍体及染色体,染色体散乱排列。
有丝分裂中期:染色体着丝点排列在赤道板上,染色体形态比较稳定,数目比 分裂期较清晰便于观察
后期:着丝点分裂,姐妹染色单体分离,染色体数目加倍 末期:核膜,核仁重新出现,纺缍体,染色体逐渐消失。 ★53、动植物细胞有丝分裂区别 植物细胞动物细胞
间期DNA复制,蛋白质合成(染色体复制)染色体复制,中心粒也倍增 前期细胞两极发生纺缍丝构成纺缍体中心体发出星射线,构成纺缍体 末期赤道板位置形成细胞板向四周扩散形成细胞壁不形成细胞板,细胞从中央向内凹陷,缢裂成两子细胞
★54、有丝分裂特征及意义:将亲代细胞染色体经过复制(实质为DNA复制后),精确地平均分配到两个子细胞,在亲代与子代之间保持了遗传性状稳定性,对于生物遗传有重要意义。
55、有丝分裂中,染色体及DNA数目变化规律
56、细胞分化:个体发育中,由一个或一种细胞增殖产生的后代,在形态、结构和生理功能上发生稳定性差异的过程,它是一种持久性变化,是生物体发育的基础,使多细胞生物体中细胞趋向专门化,有利于提高各种生理功能效率。
★57、细胞分化举例:红细胞与肌细胞具有完全相同遗传信息,(同一受精卵有丝分裂形成);形态、功能不同原因是不同细胞中遗传信息执行情况不同。
★58、细胞全能性:指已经分化的细胞,仍然具有发育成完整个体潜能。
高度分化的植物细胞具有全能性,如植物组织培养因为细胞(细胞核)具有该生物 生长发育所需的全部遗传信息
高度分化的动物细胞核具有全能性,如克隆羊 59、细胞内水分减少,新陈代谢速率减慢 细胞内酶活性降低
细胞衰老特征细胞内色素积累
细胞内呼吸速度下降,细胞核体积增大 细胞膜通透性下降,物质运输功能下降
60、细胞凋亡指基因决定的细胞自动结束生命的过程,是一种正常的自然生理过程,如蝌蚪尾消失,它对于多细胞生物体正常发育,维持内部环境的稳定以及抵御外界因素干扰具有非常关键作用。 能够无限增殖
★61、癌细胞特征形态结构发生显著变化
癌细胞表面糖蛋白减少,容易在体内扩散,转移
相关推荐: